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A weighted bisector graph is a geometric graph whose faces are bounded by edges that 
are portions of multiplicatively weighted bisectors of pairs of (point) sites such that each 
of its faces is defined by exactly one site. A prominent example of a bisector graph is 
the multiplicatively weighted Voronoi diagram of a finite set of points which induces a 
tessellation of the plane into Voronoi faces bounded by circular arcs and straight-line 
segments. Several algorithms for computing various types of bisector graphs are known. 
In this paper we reverse the problem: Given a partition G of the plane into faces, find a 
set of points and suitable weights such that G is a bisector graph of the weighted points, 
if a solution exists. If G is a graph that is regular of degree three then we can decide in 
O(m) time whether it is a bisector graph, where m denotes the combinatorial complexity 
of G. In the same time we can identify up to two candidate solutions such that G could be 
their multiplicatively weighted Voronoi diagram. Additionally, we show that it is possible to 
recognize G as a multiplicatively weighted Voronoi diagram and find all possible solutions 
in O(m logm) time if G is given by a set of disconnected lines and circles.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Motivation and related work

A geometric graph is the fixed embedding of a planar graph in the plane so that its nodes are represented by points and 
all its edges belong to some specific family of curves, e.g., straight-line segments and circular arcs. Following [1], we refer 
to a geometric graph as a bisector graph if there exists a set of input sites such that all edges of the graph lie on bisectors 
of pairs of sites. Furthermore, it is required that every face of a bisector graph is defined by exactly one site. (See the end 
of Section 1.2 for a definition of this concept.) Several authors deal with the computation of particular types of weighted 
bisector graphs and present strategies to construct them efficiently [2–4].

In this work we focus on bisector graphs that correspond to a set S of weighted points in the plane and study the 
reverse problem: Given G , a geometric graph that allegedly is a weighted bisector graph, can we recognize G as such, and 
if so, can we reconstruct the respective input sites S and weights σ such that the resulting bisector graph is equal to G? 
Furthermore, we will discuss several settings in which we are even able to recognize G as a special type of bisector graph 
that is known as multiplicatively weighted Voronoi diagram; see Figs. 1 and 2.
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Fig. 1. The multiplicatively weighted Voronoi diagram (in orange) of 30 input sites in which the point locations are highlighted by the black dots. The 
corresponding weights are written next to them. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. In (a) a section of the multiplicatively weighted Voronoi diagram that is depicted in Fig. 1 is shown. The region of the site s that is associated 
with weight 55 (highlighted in red) consists of two connected components. Furthermore, (b) and (c) show two different bisector graphs in which s is only 
associated with exactly one connected component.

Multiplicatively weighted Voronoi diagrams of points in the plane were first introduced by Boots [5]. Aurenhammer 
and Edelsbrunner [2] present a worst-case optimal algorithm to compute the multiplicatively weighted Voronoi diagram 
under the Euclidean distance. Algorithms with a decent expected-case complexity are due to Har-Peled and Raichel [3]
and Held and de Lorenzo [4]. Har-Peled and Raichel [3] also prove that the expected combinatorial complexity of the 
multiplicatively weighted Voronoi diagram is bounded by O(n log2 n) if the weights of all input points are chosen randomly. 
Eder and Held [6] describe an incremental algorithm for constructing the multiplicatively weighted Voronoi diagram under 
the maximum norm.

Multiplicatively weighted Voronoi diagrams are widely used in wireless communication to model the coverage areas of 
sensors or transmitters. If the devices are heterogeneous and distance to a device is measured by means of the Euclidean 
distance weighted by the sensing/transmitting power of the device then the service areas can be modeled as the regions of 
(multiplicatively weighted) Voronoi diagrams of the device positions. See, e.g., [7–9].
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The problem studied is motivated by a problem forwarded to us by a company working on wireless sensor networks: 
They get a geometric graph G , a set of sensor positions S and weights σ from an application of one of their customers. The 
data received is of a low quality, with very low precision of all numerical values, such that a subsequent analysis reveals 
inconsistencies. That is, the graph G and the weighted Voronoi diagram of S do not seem to match. Taking only S and σ as 
input and (re-)computing the corresponding Voronoi diagram is no option since it may be strikingly different from G . This 
is no surprise because it is known that minor changes in the positions or weights of point sites may change their Voronoi 
diagram substantially. Hence, the company’s next-best idea was to take G and try to reconstruct S and σ .

Ash and Bolker [10] were among the first to study the recognition problem for unweighted Voronoi diagrams of point 
sites. Harvingsten [11] presents a polynomial-time algorithm that is based on linear programming, for recognizing whether 
a given tessellation of Rd is an unweighted Voronoi diagram, and reconstructing the respective set of d-dimensional input 
points. Aurenhammer’s work [12] on reciprocal figures and projection polyhedra also allows to characterize and recognize 
Voronoi diagrams in higher dimensions. Biedl et al. [13] present a strategy for reconstructing the polygon or planar straight-
line graph from a given straight-skeleton or Voronoi diagram in O(n log n) time, where n is the number of edges of the 
input graph. Aichholzer et al. [14,15] investigate the realizability of a tree as the straight skeleton of a polygon. Eder et 
al. [16] explain how to reconstruct weighted straight skeletons from geometric trees.

1.2. Preliminaries

Let S be a finite set of n distinct point sites and denote their weight function by σ : S →R+ . That is, σ(s) specifies the 
weight of the site s ∈ S . For a point p in the Euclidean plane and a site s ∈ S , the (weighted) distance from p to s is defined 
as

dσ (p, s) := d(p, s)

σ (s)
,

where d(., .) denotes the standard Euclidean distance. Of course, dσ (p, S) := min{dσ (p, s) : s ∈ S}. We follow common 
Voronoi terminology and define the (weighted) Voronoi region of s ∈ S as the set of all points in R2 that are not far-
ther from s than from any other site of S with respect to dσ :

Rσ (s, S) := {p ∈R2 : dσ (p, s) ≤ dσ (p, S)}.
Then the weighted Voronoi diagram VDσ (S) of S relative to σ is the union of all region boundaries. In the sequel, we will 
simplify the terminology by dropping the term “weighted” from a Voronoi diagram and related structures and, e.g., simply 
refer to VDσ (S) as Voronoi diagram of S . Note that VDσ (S) may have a quadratic combinatorial complexity [2].

Consider an embedding of a planar geometric graph G in R2 such that its edges are formed by circular arcs, full circles 
and straight lines. All end-points of the circular arcs form the nodes of G . We demand that all edges of G meet only at these 
nodes and that each node has a degree at least three. We call such an embedding a planar circular-arc graph. The number of 
faces of the planar subdivision induced by G is denoted by m. Euler’s Theorem for planar graphs implies that G has O(m)

nodes and O(m) edges. In the sequel we will use G as our input that we seek to recognize.
As usual, a weighted bisector between two sites s1, s2 ∈ S is the locus of points that have the same weighted distance 

from s1 and s2. A (weighted) bisector graph of (S, σ) is a planar circular-arc graph G such that (1) all edges of G lie on 
weighted bisectors of S , (2) for every face f of G there exists one site s ∈ S such that f is bounded only by edges which 
lie on bisectors between s and other sites of S , and (3) for every node v of G all edges incident upon v lie on different 
weighted bisectors. (Condition (2) is the formal requirement for each face of G being defined by exactly one site.) Of course, 
weighted Voronoi diagrams of S are examples for bisector graphs of S .

1.3. Our contribution

Let G be a planar circular-arc graph G with m faces. If the edges of G are given by disjoint circles and lines then we 
can compute all solutions (S, σ) in O(m log m) time such that VDσ (S) equals G . If G has nodes and if all nodes of G are 
of degree three then we can identify in O(m) time up to two candidate solutions (S, σ) such that G is a weighted bisector 
graph of the points of S with weight function σ . We also show that two different inputs G may yield the same solution set 
(S, σ). Hence, whether or not G is an actual Voronoi diagram rather than only a bisector graph for (S, σ) seems difficult to 
decide without explicitly computing VDσ (S).

2. Weighted bisector

For every site si of S we consider a family of circles ci(t) centered at si with radius t · σ(si). Then the (weighted) bisector
b(i, j) between two distinct sites si and s j is given by the trace of the intersection points ci(t) ∩ c j(t) for r ∈R+:

b(i, j) := {ci(t) ∩ c j(t) : t ∈R+}.
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Fig. 3. (a) The bisector circle (in orange) between the sites si and s j . The weights are stated in brackets. (b) Simple construction of s j using only si and the 
circle, based on circular inversion.

For the sake of descriptional simplicity, we do not explicitly indicate the dependence of a bisector on σ . And, again, in the 
sequel we will also drop the term “weighted”. It is well-known that the bisector b(i, j) between two sites si and s j forms 
a circle. (This is easy to see if we recall that ancient Apollonius of Perga showed that a circle is the set of points of a fixed 
ratio of distances to two foci. The two foci in this case are the two input sites, and their bisector is the Apollonian circle 
which traces out the ratio of their two weights.) Furthermore, si and s j lie on a ray that originates at the center of that 
circle, with one of them on each side of the circle. Aurenhammer and Edelsbrunner [2] state two equations to describe the 
center and radius of such a bisector circle.

Lemma 1. Consider a circle C with radius r centered at c and two distinct sites si, s j of S such that si, s j lie on a ray that originates 
at c and such that si lies inside of C and s j lies outside of C. Let ri and r j denote the Euclidean distances from c to si and s j . Then the 
circle C equals the bisector circle b(i, j) relative to weights σ(si) and σ(s j) if and only if

ri · r j = r2 and
r

r j
= σ(si)

σ (s j)
. (1)

Proof. We denote the intersection points of C with the supporting line of the ray from c to si and s j by p and q. Assume 
that C equals b(i, j) for appropriate weights σ(si) and σ(s j). In particular, the points p and q are known to lie on b(i, j). 
This implies

r − ri

r j − r
= σ(si)

σ (s j)
= r + ri

r + r j
.

A simple algebraic manipulation yields ri · r j = r2.
Now assume that ri · r j = r2. Then

r − ri

r j − r
= r − r2/r j

r j − r
= r

r j
· r − r j

r − r j
= r

r j
= r

r j
· r j + r

r j + r
= r + r2/r j

r j + r
= r + ri

r + r j
.

Therefore, the points p, q are guaranteed to lie on b(i, j). Hence, the line segment pq forms the diameter of b(i, j) and, 
thus, b(i, j) equals C . Furthermore, appropriate weights fulfill the relation r/r j = σ(si)/σ (s j). �

Hence, if ri < r < r j then σ(si) < σ(s j). Note that Equation (1) matches the relation that describes a circular inversion 
[17]: The inverse H(C, p) of a point p about a circle C with center c and radius r is a point p′ which lies on the ray from 
c through p such that d(c, p) · d(c, p′) = r2. Let H(C, A) denote the circular inversion of the area A ⊆ R2 about the circle 
C . Then Lemma 1 can be re-phrased as follows: Two sites si, s j ∈ S have a circle C as their bisector circle (for appropriate 
weights) if and only if si =H(C, s j), and vice versa. This insight establishes the following lemma.

Lemma 2. Let G be a bisector graph of a set S of weighted point sites. If G contains a full circle C as an edge then at least one site of S
lies within the circular disk bounded by C such that C is its bisector circle with some other site of S outside of C.

The theory of circular inversion tells us that the inversion of a circle that is inside of C and passes through its center 
c is a line, while all other circles inside of C invert to circles outside of C . The interior of a circular disk D bounded by a 
circle C ′ maps to the interior of the inversion of C ′ if D does not contain c, and to its exterior otherwise. The center c of 
C is mapped to a point at infinity and vice versa. Furthermore, as sketched in Fig. 3, there is a simple way to construct s j
if C and si are known. Hence, given a circle with radius r and center c, we may choose any point p inside or outside of the 
circle and obtain the inverse point p′ using the equation −⇀cp · −⇀cp ′ = r2, where −⇀uv denotes the vector from u to v and the dot 
stands for the dot product of two vectors.

Now interpret R2 as the complex plane C. A Möbius transformation of C is a non-constant rational function that maps 
z ∈C to

az + b
for a,b, c,d ∈C with ad − bc 	= 0.
cz + d
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Fig. 4. (a) An example illustration of G containing nested non-intersecting circles; (b) The dual graph D of G in (a); (c) An example where there is no 
solution as H(C1, f1) ∩H(C2, f2) = ∅.

By setting a = d := 0 and b = c := 1 we obtain an inversion (and reflection about the real axis) of a point z ∈ C about the 
unit circle centered at the origin. More generally, the theory of Möbius transformations tells us that every circular inversion 
in C can be modeled as a (potentially conjugated) Möbius transformation. Every such Möbius transformation maps circles 
and lines to circles and lines. Furthermore, the composition of two Möbius transformations yields yet another Möbius trans-
formation, which can be computed by multiplying two matrices of GL2(C), the so-called general linear group of invertible 
2 × 2 matrices over C. Reference is given to Schwerdtfeger [18] for a standard introduction to Möbius transformations.

We conclude this section with a definition used in the sequel: We say that a (non-empty) set X ⊂R2 is nested inside a 
set Y ⊂R2 if R2 \ Y has a bounded connected component Z such that X ⊆ Z .

3. Non-intersecting circles and lines

3.1. No nested circles in G

In this section we employ Lemma 1 to recognize specific types of input graphs G and to reconstruct suitable weighted 
point sets (S, σ) such that G equals VDσ (S). Let G be a collection of m − 1 circles C1, C2, . . . , Cm−1 which do not inter-
sect pairwise and which are not nested. Then G partitions the plane into m − 1 circular disks D1, D2, . . . , Dm−1 and one 
unbounded region. Lemmas 1 to 2 imply that the highest-weighted site sm ∈ S has to lie in the unbounded region and that 
each disk Di has to contain a corresponding site si . Hence, we get |S| = m.

We choose an arbitrary point in the unbounded region as site sm of S . We may also choose its weight arbitrarily. Based 
on Lemma 1 we obtain point sites s1, . . . , sm−1 of S , with si inside of Ci . The weights of the remaining sites are thus fixed 
since the inversion property needs to hold; cf. Lemma 1. In other words, the site sm is chosen within ∩1≤i≤m−1 H(Ci, Di). By 
construction, sm is the highest-weighted site and its Voronoi region is the unbounded face. Furthermore, due to Lemma 1, 
we know that Ci forms the bisector circle b(i, m) for i ∈ {1, 2, . . . , m − 1}.

Suppose that VDσ (S) differs from G . Since every site of S needs to have its own Voronoi region, VDσ (S) cannot 
be a genuine subset of G . Hence there exist 1 ≤ i < j < m such that VDσ (S) contains a point p on the bisector b(i, j)
which does not lie on a circle of G . Such a point p cannot lie within both Di and D j . W.l.o.g., p does not lie within Di . 
Then dσ (p, sm) < dσ (p, si) and, thus, p /∈ VDσ (S). We conclude that VDσ (S) equals G . We summarize this result in the 
following theorem.

Theorem 1. If G is given by a collection of m − 1 circles that are not nested and do not intersect pairwise then G always admits (a 
family of) solutions (S, σ) such that G equals VDσ (S). A sample solution (S, σ) can be determined in O(m) time.

3.2. Nested circles in G

Let G be a collection of m − 1 circles C1, C2, . . . , Cm−1 which do not intersect pairwise. They are allowed to be nested, 
though. Again we denote the disks defined by these circles by D1, D2, . . . , Dm−1. For 1 ≤ i ≤ m − 1, we denote by f i the 
face of G inside of Di that is bounded by Ci and, possibly, some other circles nested inside of Ci . The unbounded face is 
given by fm and its “disk” is denoted by Dm . Lemma 2 again implies that every disk has to contain its defining site and we 
get |S| = m. However, since the circles may be nested, it is no longer good enough to choose sm within ∩1≤i≤m−1 H(Ci, Di).

We construct a dual graph D of G in the following way: For every face f i we create a node vi in D. Two nodes in D
are connected by an edge if their faces in G are adjacent. Since the circles in G are non-intersecting, D can not contain a 
cycle but forms a tree. We turn D into a rooted tree by rooting it at the node that corresponds to the unbounded face. In 
Figs. 4a and 4b we illustrate such a setup where v7 is the root node that corresponds to the unbounded face.

Next we define a solution set, ss( f ), for each face f of G recursively as the loci of points that are feasible for a point site 
inside of f .

ss( f i) :=
{

Di if vi is a leaf of D,

Di ∩
{⋂

v is a child of v H(C j, ss( f j))
}

otherwise.

j i
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In particular, the solution set ss( fm) for the unbounded face fm of G is obtained by starting at the root node of D and 
following all branches until the leaves of D are reached. Then the respective point sets are mapped back to the unbounded 
face.

Let si lie within f i . Then an inductive proof immediately implies that it is necessary for si to lie within ss( f i) for all 
1 ≤ i ≤ m. Hence, if ss( f i) is empty for some 1 ≤ i ≤ m then there exists no solution (S, σ) such that VDσ (S) matches 
G; cf. Fig. 4c. (However, in general G could still be a bisector graph for suitable (S, σ).) Otherwise, we can choose an 
arbitrary point sm within ss( fm). We may also choose its weight arbitrarily. The positions of all other sites s1, . . . , sm−1 (and 
appropriate weights) are obtained by recursively computing circular inversions of sm , as implied by D. It remains to argue 
that this construction is sufficient to ensure that VDσ (S) matches G .

Lemma 3. If (S, σ) is obtained by randomly picking a site sm ∈ ss( fm) and computing all s1, . . . , sm−1 by circular inversions, as 
outlined above, then VDσ (S) matches G .

Proof. Due to Lemma 1, we know that Ci forms the bisector circle b(i, j) if s j lies outside of Di and if si is obtained by 
a circular inversion of s j about Ci . So suppose that there exist 1 ≤ i < j ≤ m such that VDσ (S) contains a point on the 
bisector b(i, j) which does not lie on a circle of G . The arguments used for non-nested circles imply that this could only 
happen if the node v j is an ancestor of the node vi (or vice versa). Since, by construction, G contains the bisector of si
and s j if vi is a child of v j , we know that there is at least one node vk that is a child of v j and an ancestor of vi . Hence, 
Rσ (si, S) ⊆ Di ⊂ Dk ⊂ D j and Dk equals b(k, j). However, then every point of Rσ (si, S) is closer to sk than to s j , making 
it impossible for si and s j to share a point that belongs to VDσ (S). �

The solution set ss( fm) is described by m − 1 circles (or straight lines) together with sidedness information that tells us 
on which side of a circle (or line) the feasible points lie. If ss( fm) is not empty then it forms a face in the arrangement of 
the m − 1 circles (and lines). Note that this approach works also if the circles of D are allowed to touch each other. We now 
focus on the actual computation of ss( fm).

Lemma 4. In O(m) time we can obtain appropriate transformations of the m − 1 disks associated with all nodes of D except for its 
root node.

Proof. As outlined in Section 2, we interpret R2 as the complex plane C and proceed as follows: For every non-leaf node 
of D we set up the appropriate Möbius transformation. (The identity transformation is used for the root of D.) Then we 
apply an in-order traversal to D and, for each non-leaf node ν other than the root of D, we compute the composition of 
the Möbius transformation stored at ν with the Möbius transformation stored at the parent of ν . This composed Möbius 
transformation replaces the old transformation stored at ν . Hence, in O(m) time we can obtain appropriate transformations 
of the m − 1 disks associated with all nodes of D except for its root node. �

In order to obtain ss( fm) it remains to compute the intersection of these disks. The intersection of m − 1 disks or the 
disks’ complements can be constructed in O(m log m) time. Brown describes this representation in detail in his thesis [19]. 
Aurenhammer and Edelsbrunner [2] use an extended version to construct the weighted Voronoi diagram. We follow their 
description and describe in the following how we apply it to our setting.

Lemma 5. The intersection of the m − 1 disks or the disks’ complements at the root node of D can be computed in O(m logm) time.

Proof. For every disk we embed its defining circle in the xy-plane in R3. We choose an arbitrary point of inversion pi in 
R3 that does not lie on the xy-plane, e.g., (0, 0, 1) the point above the origin at z = 1. Note that by using a single circle 
and a point not on the circle we can uniquely define a sphere such that both circle and point lie on the sphere’s boundary. 
Hence, for each circle we create a unique sphere in combination with pi . Then, pi lies on all m − 1 spheres. Using pi as 
point of inversion we apply a spherical inversion that creates a half-space from every sphere. For each disk computed for 
ss( fm) we know whether the disk or its complement is to be considered. If the disk’s complement is required then we form 
the complement of the respective half-space. We can form the intersection of these m − 1 half-spaces in O(m log m) time. 
The result is a convex polyhedron P in R3. To obtain a representation of R2 we invert the xy-plane using pi as well. The 
result is a sphere Sxy that contains pi . Then we intersect P with Sxy . Since P is formed from m − 1 half-spaces it has 
a combinatorial complexity of O(m). Hence, we can traverse each facet f of P and intersect it with Sxy . As each facet is 
convex as well we find the intersection for every f in O(| f |) time. We keep the portion of each facet that lies outside of 
Sxy . Hence, ss( fm)′ := P ∩ Sxy is constructed in O(m) time, where Sxy denotes the complement of Sxy . Let e′ denote an 
edge of P that is shortened by the intersection process. Let e denote e′ transformed back to the xy-plane. The two planes 
that are locally incident at e′ imply two specific disks with respect to e in the xy-plane. The shortened endpoint of e′ , and 
e respectively, is the point where the boundaries of the two disks meet.

Transforming ss( fm)′ back into the xy-plane yields ss( fm) and is accomplished in linear time in the size of the intersec-
tion. Therefore we obtain ss( fm) in overall O(m log m) time. �
6
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Fig. 5. Two weighted sites and their bisector.

Recall that our circular inversions may create half-planes as well: In case a transformed circle intersects the center of 
an inversion circle it is transformed into a line, i.e., half-plane. Let � denote such a line in R2. Instead of a sphere we form 
a plane in R3 that intersects � and the inversion point pi . We take advantage of the inversion property of the plane that 
intersects the inversion point, that is, the plane inverts into the same plane. The half-plane defining � defines the half-space 
for the plane and we can apply our half-space intersection as described above. Theorem 2 summarizes the main result of 
this section.

Theorem 2. Let G be a collection of m − 1 circles C1, C2, . . . , Cm−1 that do not intersect pairwise. Then we can compute all solutions 
(S, σ) such that G matches VDσ (S) in O(m log m) time.

3.3. Nested circles and lines in G

Let G be a collection of m − 1 circles and lines which do not intersect pairwise. The circles are allowed to be nested, 
though. We follow the notation of the previous section. Let k denote the number of lines �1, . . . , �k in G . Clearly for k > 1
the lines have to be parallel to be non-intersecting. Since a line is not finite it can only partition the unbounded face. Hence, 
the lines partition the unbounded face into k +1 unbounded regions. For two sites si, s j to form a line � ∈ G as their bisector 
the sites must have equal weight and therefore equal distance to �, cf. Section 2. We modify our inversion function H(., .)
such that the inverse of a point about a line is simply its mirrored image. To obtain a solution we construct the dual graph 
D for each unbounded face separately. Then, we compute the solution set for each tree root v1, . . . , vk+1. Finally, starting 
at an unbounded face that is incident to at most one line �, we map its solution arrangement via � to the next consecutive 
face and form the intersection with its solution space. We repeat this process until we reach the last unbounded face and 
thereby obtain a full characterization of the solution.

4. Recognizing G as bisector graph

Given a planar circular-arc graph G , we ask whether G is a weighted bisector graph. If it is a bisector graph, then we 
seek a set S of suitable sites and a corresponding weight function σ . That is, we want to find a solution (S, σ) such that 
every edge of G lies on a bisector defined by two sites of S . Contrary to Section 3 we now assume that G contains at least 
one node. For a start, we also assume that all nodes of G are of degree exactly three.

We begin with studying the structure of weighted bisector graphs. As a start we recall Condition (3) in the definition of 
a bisector graph (at the end of Section 1.2): The three edges of G that are incident at a degree-three node v of G have to 
lie on three distinct bisector circles. Hence, as a first check, we scan all nodes of G to verify that this prerequisite is met. If 
it is not met then we do already know that G is no bisector graph. Of course, this scan can be carried out in time linear in 
the number of nodes and edges of G .

Lemma 6. Let si , s j , sk denote three sites, with σ(si) < σ(s j) < σ(sk). Then there exists a line � which contains the centers of all three 
bisectors b(i, j), b( j, k), and b(i, k).

Proof. Consider two sites si and s j with σ(si) < σ(s j). The center of their common bisector circle b(i, j) is denoted by 
c(i, j); cf. Fig. 5.

The points L and R are two points on the bisector, equidistant (in weighted terms) to both si and s j . Point L is of 
maximal distance and point R of minimal distance. The distance relation (R−si )/σ (si) = (s j−R)/σ (s j) yields

R = siσ(s j) + s jσ(si)

σ (si) + σ(s j)
.

Similarly, the relation (si−L)/σ (si ) = (s j−L)/σ (s j) yields

L = s jσ(si) − siσ(s j)

σ (s ) − σ(s )
.

i j

7
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Since c(i, j) = 1/2(L + R), we immediately see that

c(i, j) = s jσ(si)
2 − siσ(s j)

2

σ(si)
2 − σ(s j)

2
.

Now consider three sites, si, s j, sk with σ(si) < σ(s j) < σ(sk). We want to show that the centers of their bisector circles, 
i.e., c(i, j), c(i, k), and c( j, k) are collinear. Three points are collinear if and only if the area of the triangle defined by them 
is zero. Thus, the three points in question are on the same supporting line if the following determinant vanishes:

D :=
∣∣∣∣∣∣

x(c(i, j)) y(c(i, j)) 1
x(c(i,k)) y(c(i,k)) 1
x(c( j,k)) y(c( j,k)) 1

∣∣∣∣∣∣
where x(p) and y(p) denote the x- and y-coordinates of a point p.

After expanding the determinant we get

D = x(c(i, j)) · (y(c(i,k)) − y(c( j,k)))

+ x(c(i,k)) · (y(c( j,k)) − y(c(i, j)))

+ x(c( j,k)) · (y(c(i, j)) − y(c(i,k)))

=
(
x(s j)σ (si)

2 − x(si)σ (s j)
2
)(

y(sk)σ (si)
2−y(si)σ (sk)

2

σ (si)
2−σ (sk)

2 − y(sk)σ (s j)
2−y(s j)σ (sk)

2

σ (s j)
2−σ (sk)

2

)
σ(si)

2 − σ(s j)
2

+
(
x(sk)σ (si)

2 − x(si)σ (sk)
2
)(

y(sk)σ (s j)
2−y(s j)σ (sk)

2

σ (s j)
2−σ (sk)

2 − y(s j)σ (si)
2−y(si)σ (s j)

2

σ (si)
2−σ (s j)

2

)
σ(si)

2 − σ(sk)
2

+
(
x(sk)σ (s j)

2 − x(s j)σ (sk)
2
)(

y(s j)σ (si)
2−y(si)σ (s j)

2

σ (si)
2−σ (s j)

2 − y(sk)σ (si)
2−y(si)σ (sk)

2

σ (si)
2−σ (sk)

2

)
σ(s j)

2 − σ(sk)
2

= 0,

thus having proved the claim. �
Lemma 7. Let si, s j, sk denote three distinct sites. If two of the three bisectors b(i, j), b( j, k), and b(i, k) intersect at a point p, then all 
three bisectors intersect in p.

Proof. Assume that b(i, j) and b( j, k) intersect in the point p. Since b(i, j) is the set of points of equal (weighted) distance 
to si and s j , and b( j, k) is the set of points of equal distance to s j and sk , it follows that p has equal distance to si , s j , and 
sk . Thus, p also lies on b( j, k). �
Corollary 1. Let si, s j, sk denote three distinct sites. Then b(i, j), b( j, k) and b(i, k) intersect pairwise either in exactly two points, 
exactly one point, or not at all.

4.1. Finding sites from bisectors

Let v denote a node of degree three of the graph G . This node is the intersection of three circular arcs, i.e., of the bisector 
circles of three sites. We seek the locations of these sites given the bisector arcs. Let i, j, k be the indices of these three 
sites, and denote the centers of their bisector circles by c(i, j), c( j, k), c(i, k); see Fig. 6.

Lemma 6 tells us that the centers c(i, j), c( j, k), c(i, k) lie on a line �. Thus, we can, w.l.o.g., assume the centers to lie on 
the x-axis and v to be at coordinates (0, 1). (The general case is reduced to this setting by rotation, scaling, and translation.)

Next, we set up the conjugated Möbius transforms Hi, j , H j,k , and Hi,k , across bisectors b(i, j), b( j, k), and b(i, k), respec-
tively, Furthermore, we concatenate all three transforms into a single transform H := Hi, j ◦ H j,k ◦ Hi,k .

Let the x-coordinates of c(i, j), c(i, k), and c( j, k) be given by x1, x2, and x3. Then, the Möbius transform H is given by 
the matrix product of three individual transforms. Simple math yields

H =
(

(x1 − x2 + x3 + x1x2x3) (1 + x1x2 − x1x3 + x2x3)

(1 + x1x2 − x1x3 + x2x3) (−x1 + x2 − x3 − x1x2x3)

)
.

Now it must hold that Si = Hi, j(S j) and S j = H j,k(Sk) and Sk = Hi,k(Si), where Si is a solution set for site si , and S j
and Sk are defined likewise. In particular, Si = Hi, j(H j,k(Hi,k(Si))), or equivalently, Si = H(Si).
8
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Fig. 6. Reconstructing the three sites that traced out the orange bisector arcs incident at node v . A site si necessarily lies on an arbitrary location on the 
green solution circle Si . Sites s j and sk then follow by inversions of si across the corresponding bisector.

Solving this equation for Si =: (x, y) yields

y2 + x2 − 2(x1 − x2 + x3 + x1x2x3)

1 + x1x2 − x1x3 + x2x3
x − 1 = 0,

which is a circle with center at coordinates

c(si) =
(

x1 − x2 + x3 + x1x2x3

1 + x1x2 − x1x3 + x2x3
,0

)
and which goes through the intersection point of all bisectors at (0, 1). Likewise, the solution set for S j and Sk are circles, 
namely the corresponding inverses or Möbius transforms of Si .

Therefore, given three intersecting bisectors, we can find sites si , s j , sk that generate these bisectors. In general the sites 
are not uniquely defined, and instead each site lies on a “solution circle”. This establishes Lemma 8.

Lemma 8. Let v denote a node of degree three of G . Let b(i, j), b(i, k), and b( j, k) define the three arcs that meet at v. Then the sites 
si , s j , and sk lie on solution circles Si, S j , and Sk, which can be constructed. Picking a specific locus for si on Si automatically fixes the 
other sites, and vice versa.

4.2. Bisector graph recognition

In the following, we describe how to obtain a solution (S, σ) such that every edge of G lies on one bisector defined by 
(S, σ), if such a solution exists, and thereby detects whether G is a bisector graph. Recall that every node of G has degree 
three. (In Section 4.4 we waive this restriction and discuss the general case.)

Let f1, . . . , fm denote the faces of G , where m ≥ n for n := |S|. Let f i denote a face of G with a maximal number of 
boundary nodes. The nodes on the boundary of f i are given by v1, . . . , vk . We have k > 0 because we had assumed to 
have at least one node in G . As each node is given by the intersection of distinct bisectors, we necessarily have k > 1. In 
case k = 2, we apply Lemma 8 to the two degree-three nodes of f i , thus obtaining a family of solutions for f i . These local 
solutions are combined by means of the process outlined in Section 3.2.

Otherwise, the face f i has k ≥ 3 nodes. Note that it is still possible for each bounded face to have at most two nodes. 
However, in that case two or more nodes will be incident to the unbounded face. Applying Lemma 8 to one node of f i will 
yield a family of solutions for the site si for f i . However, we can even restrict this solution to a constant number of points 
as follows. We traverse the boundary of f i , node by node, and apply Lemma 8. Thereby we produce k solution circles for si , 
denoted by S1

i , . . . , S
k
i . Necessarily, si is in the intersection of these solution circles: si = ⋂k

j=1 S j
i .

Let S1
i and S2

i denote two circles such that S1
i 	= S2

i . Note that a solution circle S j
i computed for v j intersects v j . Thus, 

for every S j
i we can find a different node (when k ≥ 3) on f i which is not on S j

i and so its solution circle will be different. 
Therefore, two such circles exist. Hence, the intersection si = ⋂k

j=1 S j
i contains at most two points. If si = ∅ then G is not a 

bisector graph. Otherwise, these points are loci for the site, thus establishing Lemma 9.

Lemma 9. For a face f of G with at least three boundary nodes the set of solutions for the site of f consists of at most two points.

Every other solution circle intersects either both solution points or reduces the solution to a single point p. We now 
assume that the solution consists of a single point p. (Otherwise we apply the following process to both points.)

We choose p as locus for our site si with arbitrary weight. We use the identified site si and apply inversions H(., .)
via every edge defining f i to obtain all neighboring sites. Then we repeat the process for all neighboring sites and their 
neighbors in turn, traversing the entire graph G , breadth first. Thereby we obtain the solution (S, σ) after O(m) inversions. 
In every face processed we verify that the solution circles defined by the boundary nodes contain the alleged site. If a 
solution circle does not contain the alleged site then G does not constitute a bisector graph for this starting point p.
9
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Fig. 7. In a bisector graph with nodes of higher degree, we can partition the incident arcs, construct individual solution sets, and intersect those. (a) Graph 
G with centers of the bisector arcs incident at v . For instance, c1,2 is the center of the bisector between sites s1 and s2, which had traced out regions 
R1 and R2. (b) Even if we do not have the bisector given, we can construct the bisector (red) between s1 and s3. (c) Now we have two systems of three 
bisectors each: The s1, s2, s3-system, and the s1, s3, s4- system. For each of them, we can construct solution circles for s1 (green): SC1 and SC2. (d) The 
intersection of these solution circles yields a position for s1. The other sites are obtained by standard spherical inversions across the appropriate bisector 
arcs.

4.3. Complexity

If k = 2 then we can find all local solutions in O (1) time. We note that we are able to handle nested circles in O(m)

time whenever G includes degree-three nodes (as assumed) because applying the conjugated Möbius transform on G already 
yields all feasible sites for the subgraphs of G that contain nodes. Thus, it is not necessary to compute the entire solution 
set for the nested circles in G .

If k ≥ 3 then we find a face f i with k nodes in O(m) time. We find the solution circles in O(1) time per node and 
intersect them in O(k) time. Using the resulting intersection point p, we apply the breadth-first traversal, which takes 
again O(m) time, as each face f is processed in time linear in the combinatorial size of the face. Therefore we obtain 
Theorem 3.

Theorem 3. Given a planar circular-arc graph G with m faces, in time O(m) we can detect whether G constitutes a bisector graph and, 
if yes, determine the (at most two) suitable solutions (S, σ).

Note that S may contain more than one site on the same locus. This is admissible for a bisector graph but not for a 
Voronoi diagram.

4.4. Handling nodes of higher degree

At the start of this section we had assumed that all nodes of G are of degree three. This restriction can be waived while 
still maintaining Theorem 3. Consider a node of G with degree larger than three and its incident bisector circular arcs. We 
can distinguish two fundamentally distinct cases: a) The centers of all the circles are collinear, or b) not all of them are 
collinear.

If all centers lie on the same supporting line then we can construct a Möbius transform H that represents the inversions 
across all the incident bisector arcs in the same way as described in the proof of Lemma 8. Once we have that, we can once 
more solve si = H(si) and thus obtain all valid locations for a site. Note that, for instance with degree-four nodes and the 
bisector circles in specific configurations, it may be that the entire plane is a valid solution. Other degree-four configurations 
may yield only the trivial solution of the intersection point of all bisectors and thus will never appear in bisector graphs.

If not all centers lie on the same supporting line then we can reduce the problem to subproblems of smaller size. For 
instance, if we have a degree-four node, we consider appropriate pairs of centers of the bisector arcs. For each pair, we 
construct its supporting line, and its intersection is the center for another bisector, one that did not have arcs represented 
in G . Thus, for each supporting line we now have three bisector arcs, and the procedure from Lemma 8 yields a solution 
circle for a site. By intersecting the solution circles for the different supporting lines we obtain the location of a site. Fig. 7
demonstrates this procedure.
10



G. Eder, M. Held, S. de Lorenzo et al. Computational Geometry: Theory and Applications 109 (2023) 101935
Fig. 8. Given sites S := {s1, . . . , s4} and an appropriate weight function σ , then (a) shows a bisector graph of (S, σ ) and (b) shows VDσ (S).

4.5. Recognizing G as Voronoi diagram

Consider a planar circular-arc graph G . Does there exist a solution set (S, σ) such that VDσ (S) equals G? Since every 
Voronoi diagram is a bisector graph, we start by applying the bisector-graph detection presented in the previous section.

If G is not recognized as a bisector graph, then it is not a Voronoi diagram. If G does not contain nodes then G is 
guaranteed to match VDσ (S) for all solutions (S, σ) returned by our reconstruction algorithm. In the general case, where 
G contains nodes, then G need not be a Voronoi diagram even if we can find a suitable (S, σ). In Fig. 8, we illustrate two 
examples which both are bisector graphs for the same pair (S, σ) but only Fig. 8b is a Voronoi diagram. Observe that Fig. 8a 
does not contain the face f in the center of Fig. 8b.

Would it help to get additional information on the input graph G or on VDσ (S) for an output (S, σ) obtained by our 
reconstruction algorithm? If it is known that VDσ (S) has no disconnected Voronoi region then G is guaranteed to be 
identical to VDσ (S). Similarly, if we are told that G forms the Voronoi diagram of some unknown weighted input then we 
also have a good chance that an appropriate input can be reconstructed: If our reconstruction algorithm returns a unique 
solution (S, σ) such that G is a bisector graph for (S, σ) then G is also guaranteed to match VDσ (S). In the unlikely case 
that we get two solutions for which G forms a bisector graph then it is only clear that G matches the Voronoi diagram of 
at least one of the solutions. Unfortunately, in this case there seems no simple way to pick the appropriate solution.

A canonical way to verify whether G matches the Voronoi diagram VDσ (S) is to compute VDσ (S) using the approach 
by Aurenhammer and Edelsbrunner [2]. Their algorithm is worst-case optimal and runs in O(n2) time and space. Of course, 
this is a waste of time if the combinatorial complexity of G is sub-quadratic. Alternatively, one may use the strategies 
presented by Har-Peled and Raichel [3] or Held and de Lorenzo [4], which allow to compute VDσ (S) in expected O(n log3 n)

or O(n log4 n) time, respectively, under the assumption that the corresponding weights are sampled from some random 
distribution. A final comparison between the diagram computed and G yields the decision sought: We find a common node 
in G and VDσ (S) and apply a breath-first traversal to compare all nodes and arcs. Therefore, the comparison can be carried 
out in O(m) time.

5. Discussion

We present a novel approach for recognizing whether a given planar circular-arc graph G is a weighted bisector graph, 
and, provided that this is the case, for reconstructing the respective input sites. The Möbius transformation is central to our 
approach, as it allows us to generate a solution set, or confirm that G is no weighted bisector graph whenever no such set 
exists.

It is obvious that we need Condition (2) in the definition of a bisector graph (at the end of Section 1.2) in order to 
permit a meaningful recognition. Without Condition (2), every circular-arc graph G would constitute a bisector graph, and 
we could simply obtain a suitable pair of candidate sites for every edge e of G by means of circular inversion across the 
supporting circle of e.

Fig. 9 shows two circular-arc graphs that both meet Condition (2) but violate Condition (3). (In Fig. 9a, all three edges 
have s1 as one of their defining sites, while s2 is one of the defining sites of all three edges in Fig. 9b.) If no further 
constraints are given then we can choose the position and weight of one of these three sites arbitrarily and then obtain the 
two other sites via circular inversions. E.g., for the setting shown in Fig. 9a, we could choose s1 and then obtain s2 and s3
via circular inversions of s1, or choose s2 and then obtain s1 and then use s1 to obtain s3. If, however, one these sites is also 
subject to some other constraint imposed by G that fixes its position and weight then all three sites would be determined 
(or no solution exists). Hence, our approach could be generalized to circular-arc graphs that violate Condition (3).

Whenever G does not contain nodes, we are even able to determine whether G is a multiplicatively weighted Voronoi 
diagram VDσ (S), and to reconstruct (S, σ). If a general graph G has been recognized as a bisector graph of (S, σ) then the 
main difficulty of verifying that G matches VDσ (S) is given by deciding whether all disconnected faces of VDσ (S) that do 
not contain their defining sites are also present in G . It remains a question for future research to confirm that a bisector 
graph of (S, σ) matches VDσ (S) without explicitly computing VDσ (S).
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Fig. 9. Two circular-arc graphs that meet Condition (2) but violate Condition (3) in the definition of a bisector graph: The nodes (depicted in red) have two 
edges incident that lie on the same bisector circle b(s1, s2).
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