
2-Opt Moves and Flips for Area-optimal Polygonizations

GÜNTHER EDER, MARTIN HELD, STEINÞÓR JASONARSON, PHILIPP MAYER, and
PETER PALFRADER, FB Computerwissenschaften, Universität Salzburg, Austria

Our work on the Computational Geometry Challenge 2019 on area-optimal polygonizations is based on two

key components: (1) sampling the search space to obtain initial polygonizations and (2) optimizing such a

polygonizations. Among other heuristics for obtaining polygonizations for a given set P of input points, we

discuss how to combine 2-opt moves with a line sweep to convert an initial random (non-simple) polygon

whose vertices are given by P into a polygonization P. The actual optimization relies on a constrained trian-

gulation of the interior and exterior of a polygonization to speed-up local modifications of the polygonization

to increase or decrease its area.

CCS Concepts: • Theory of computation → Design and analysis of algorithms; Computational

Geometry;

Additional Key Words and Phrases: Computational geometry, geometric optimization, algorithm engineering,

exact algorithms, polygonization, area optimization

ACM Reference format:

Günther Eder, Martin Held, Steinþór Jasonarson, Philipp Mayer, and Peter Palfrader. 2022. 2-Opt Moves and

Flips for Area-optimal Polygonizations. J. Exp. Algorithmics 27, 2, Article 2.7 (March 2022), 12 pages.

https://doi.org/10.1145/3500913

1 INTRODUCTION

Consider a given set P of n distinct points in the plane. A (simple) polygonization P of P is a
closed tour on P that forms a simple polygon. The task of the Computational Geometry Challenge
2019 was to find polygonizations of P with minimum (“Min-Area”) and maximum (“Max-Area”)
enclosed area for various input sets P and different sizes n. We refer to Reference [5] for a survey
with background information on this problem and to References [4, 8, 11, 13] for descriptions of
the approaches taken by the other four top teams.

In general, the number of polygonizations of P is exponential in n: García et al. [7] prove a lower
bound of Ω(4.642n) for the number of polygonizations that a set of n points can admit. Hence, a
brute-force search for Min-Area/Max-Area polygonizations of P is no option. This fact motivated
us to base our approach on two key components:

Sampler: The sampler computes an initial polygonization of P .

Work supported by Austrian Science Fund (FWF): Grants ORD 53-VO and P31013-N31.

Authors’ address: G. Eder, M. Held, S. Jasonarson, P. Mayer, and P. Palfrader, FB Computerwissenschaften, Universität

Salzburg, Salzburg, Austria; emails: {geder, held, sjas, pmayer, palfrader}@cs.sbg.ac.at.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International
4.0 License.

© 2022 Association for Computing Machinery.

1084-6654/2022/03-ART2.7 $15.00

https://doi.org/10.1145/3500913

ACM Journal of Experimental Algorithmics, Vol. 27, No. 2, Article 2.7. Publication date: March 2022.

https://orcid.org/0000-0003-0728-7545
https://doi.org/10.1145/3500913
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3500913

2.7:2 G. Eder et al.

Optimizer: The optimizer takes a polygonization and, while maintaining its simplicity, modi-
fies the polygonization to optimize its area.

It is obvious that the mere number of polygonizations makes it highly unlikely that a sampler
will return a polygonization that already has a near-optimal area. It is less clear, though, whether
different classes of initial polygonizations might allow the optimizer to yield better results. And
even if a “good” class of initial polygonizations existed, it is not obvious how to compute them
efficiently.

We opted for computing a large sample set of polygonizations with different characteristics
for every given set of points. This initial generation of polygonizations on P is accomplished by
our two random polygon generators RandomPolygonGenerator (Rpg) and SweepPoly-

gonGenerator (Spg), by our simple generator for monotone polygons, PAO-mono, and by
Helsgaun’s TSP code LKH [10]. Then, for every polygonization of our sample set, we apply local
optimizations to optimize the area. This task is carried out by Pao-Flip, our polygon area opti-
mizer. Source code of our implementations is available on GitHub and can be used freely under
the GPL(v3) license:

Spg https://github.com/cgalab/genpoly-spg
Rpg https://github.com/cgalab/genpoly-rpg

Pao-Flip https://github.com/cgalab/pao-flip
In the sequel, we describe the algorithms of Rpg and Spg and analyze their properties. Then

we present Pao-Flip’s optimization heuristics applied to convert our initial polygonizations into
area-optimal polygonizations.

2 METHODS

2.1 Polygonization

Rpg was designed and implemented by Auer and Held [1] in the late 1990s. It offers various heuris-
tics to generate pseudo-random polygonizations for a given set of vertices. We resurrected this
code, updated it to make it compile on modern platforms, and extended and improved its algo-
rithms. For instance, Rpg now supports the generation of polygons with holes [6].

Let P denote a set of n input points in the plane that are indexed from 0 to n − 1. (In the sequel,
all indices will be taken modulo n.) We used three heuristics of Rpg: RPG-star to generate pseudo-
random star-shaped polygonizations, and RPG-2opt and RPG-space to generate two families of
arbitrary polygonizations.

RPG-star: It computes the convex hull CH (P) of P and then picks a random locus p within
CH (P). Then a star-shaped polygonization P of P is obtained in O (n logn) time by sorting
the points of P radially around p.

RPG-space: It is a divide&conquer approach that partitions P recursively into two subsets
whose convex hulls are disjoint. The recursion ends when a subset has three or fewer ver-
tices and, therefore, a polygonal chain on these vertices can be obtained easily. The final
polygonization is obtained by splicing the individual chains together. The worst-case com-
plexity of RPG-space is O (n2), but its expected complexity is O (n logn).

RPG-2opt: Initially, a polygon is created by choosing a random permutation of the input
points. This initial polygon is not simple with high probability. Self-intersections are re-
moved by repeatedly applying so-called 2-opt moves [3, 16]: Two polygon edges that inter-
sect are regarded as the diagonals of a quadrilateral and replaced by a suitable pair of edges of
that quadrilateral. If the polygon contains the vertex sequences (. . . ,vi−1,vi ,vi+1,vi+2, . . .)
and (. . . ,vj−1,vj ,vj+1,vj+2, . . .) such that the edges vi ,vi+1 and vj ,vj+1 intersect, then we

ACM Journal of Experimental Algorithmics, Vol. 27, No. 2, Article 2.7. Publication date: March 2022.

https://github.com/cgalab
https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/cgalab/genpoly-spg
https://github.com/cgalab/genpoly-rpg
https://github.com/cgalab/pao-flip

2-Opt Moves and Flips for Area-optimal Polygonizations 2.7:3

Fig. 1. Left-to-right: A sample RPG-star polygonization, an RPG-space polygonization and an RPG-2opt
polygonization is shown for the same set of 30 input points.

replace these sequences by (. . . ,vi−1,vi ,vj ,vj−1, . . .) and (. . . ,vi+2,vi+1,vj+1,vj+2, . . .); see
Figure 3(a). (Note that a 2-opt move results in a re-orientation of a chain of the polygon). A
key property of a 2-opt move is that it decreases the perimeter of the polygon (if the two
edges are not collinear). This guarantees that we will eventually arrive at a polygonization
if we apply 2-opt moves repeatedly to resolve intersections. Very similar to Held’s triangu-
lation code Fist [9], a uniform grid is applied as a subdivision of the plane in order to speed
up the detection of pairs of polygon edges that intersect. Every grid cell that is intersected
by two (or more) edges of the polygon is a candidate cell that might witness (at least) one
edge intersection. These candidate cells are checked in random order, and a 2-opt move is
applied to resolve each edge intersection found. (Of course, the set of candidate cells will
change dynamically as 2-opt moves are applied.) A result by van Leeuwen and Schoone [15]
tells us that we may need O (n3) 2-opt moves to convert an initial polygon into a simple
polygonization.

We refer to Auer and Held [1] for a more detailed description of these three heuristics of Rpg.
Sample polygonizations computed by these heuristics are shown in Figure 1. While RPG-2opt
generates every possible polygonization on P with positive probability, RPG-space cannot generate
all polygonizations and tends to generate outlines that contain lots of zigzags.

At the start of this work we attempted to formulate the area optimization problem as a TSP, with
“distances” chosen to reflect Gauss’s area formula. While we did not succeed with this approach,
we did end up using an approximate TSP tour (with standard Euclidean distance) as one additional
initial polygonization per input. These TSP tours were generated by the Lin-Kernighan-Helsgaun
TSP solver LKH1 [10]. Helsgaun’s LKH uses a local search heuristic based on the variable depth
local search of Lin and Kernighan [12]. The Lin-Kernighan local search can be seen as a general-
ization of 2-opt and 3-opt moves. Since an approximate TSP tour need not be a polygonization, we
checked the simplicity of all LKH outputs by means of one of our 2-opt codes. (As a matter of fact,
all LKH outputs turned out to be polygonizations.)

Finally, while we were working on the other codes for sampling the polygonizations, we imple-
mented a simple algorithm to generate x-monotone polygonizations (PAO-mono): A polygon’s
lower chain is given by the lower chain of the convex hull of the input points, and its upper chain
is given by the left-to-right sequence of all remaining points. To get more than one sample polygo-
nization, we applied a (random) rotation to every point set prior to applying this simple algorithm,
thus obtaining a total of 64 monotone polygonizations per input set.

1We obtained version 2.0.9 from http://akira.ruc.dk/~keld/research/LKH/.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 2, Article 2.7. Publication date: March 2022.

http://akira.ruc.dk/~keld/research/LKH/

2.7:4 G. Eder et al.

Fig. 2. Local optimizations by “inverting” (left pair of figures) and “flipping” (right).

2.2 Area Optimization

The first method that we used is inverting: Consider four consecutive vertices vi−1,vi ,vi+1,vi+2

of a polygonization P such that vi is convex2 and vi+1 is reflex or vice versa; see Figure 2. If the
two triangles Δ(vi−1,vi ,vi+1) and Δ(vi ,vi+1,vi+2) are empty,3 then we can locally modify P by
replacing the polygonal chain (vi−1,vi ,vi+1,vi+2) by the chain (vi−1,vi+1,vi ,vi+2), i.e., by inverting
the order of vi and vi+1 within P. Of course, this will preserve the simplicity of P.

The second method is flipping: Consider a vertex vi such that the triangle Δ(vi−1,vi ,vi+1) is
empty. If there exist consecutive verticesvj ,vj+1 such that the triangle Δ(vj ,vj+1,vi) is also empty
and if one of the triangles belongs to the interior of P while the other triangle belongs to the
exterior of P, then we can modify P by connectingvi−1 andvi+1 directly and insertingvi between
vj and vj+1. Again the simplicity of P is preserved; see Figure 2. We note that inverting can be
seen as a special case of flipping, with j = i + 1.

Both inverting and flipping replace one triangle by another triangle. In general, the areas of
these two triangles will not be identical. Hence, repeated appropriate applications of inverting or
flipping increase or decrease the area of a polygonization. Of course, we may run out of applicable
inverting/flipping operations and this process may get stuck without achieving a polygonization
with optimum area.

3 ALGORITHM ENGINEERING

3.1 Efficient 2-opt Moves

The main building block for carrying out 2-opt moves among the edges of a polygon is given by
the detection of pairs of edges that intersect. Nevertheless, we need to avoid an all-pairs check.
For a static set of straight-line segments, the Bentley-Ottmann line sweep [2] is a classical (and
relatively easy to implement) tool for detecting all pairs of edges that intersect. In our application
the situation is complicated by the fact that we need to do more than intersection detection on a
static set of line segments: As we apply 2-opt moves to resolve intersections among edges, new
intersections can be introduced, so our algorithm must be able to perform a limited version of
dynamic segment intersection detection.

As it is not immediately obvious how to combine a line sweep with 2-opt moves in an efficient
way, we were surprised that we could not find any experimental analysis of such a line sweep.
Hence, we implemented Spg and tested three variants of the sweep. The main sweep direction of
all our sweeps is from left to right. Our sweeps differ mainly in how they detect and resolve an
intersection.

2As usual, we call a vertex v of P convex (or reflex) if the interior angle at v is less than 180° (or greater than 180°,

respectively).
3We call a triangle Δ empty if the intersection of Δ with (the boundary of) P is formed only by vertices and edges of Δ.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 2, Article 2.7. Publication date: March 2022.

2-Opt Moves and Flips for Area-optimal Polygonizations 2.7:5

Assume that the sweep line is at x coordinate xs and has encountered a pair of edges that
intersect to the right of xs . This intersection is resolved by applying a 2-opt move.

SPG-loop: The sweep continues rightwards and scans edges to the right ofxs . When the sweep
reaches the right-most input point, we restart the sweep from scratch at the left-most input
point. We loop through this left-right sweeping until no further intersection is found.

SPG-resolve: We check for other intersections at the current sweep-line position xs and re-
solve all those intersections. Then the sweep continues rightwards and scans edges to the
right of xs . Again, after reaching the right-most input point we restart the sweep at the
left-most input point.

SPG-reverse: We reverse the sweep direction and scan edges to the left of xs . This leftwards
sweep allows us to deal with possibly new edge intersections introduced by the 2-opt move
to the left of xs , i.e., to detect and resolve such intersections by additional 2-opt moves. We
resume our rightwards sweep once the leftwards sweep has reached the left-most end-point
of an edge involved in one of those 2-opt moves. Hence, we get the invariant that no inter-
section exists to the left of the current sweep position whenever we sweep rightwards. Thus,
the sweep is finished once the right-most input point has been reached.

All three variants have in common that they keep sweeping leftwards or leftwards/rightwards until
we get one full pass over all edges that does not reveal an intersection. This way it is guaranteed
that the final polygon is simple.

In addition to these three variants of a Bentley-Ottmann line sweep combined with 2-opt moves,
we implemented a brute-force algorithm (BF-2opt) for comparison purposes: Initially, we sort all
input points lexicographically4 with respect to theirx andy coordinates. Furthermore, we associate
with each point p the two edges of the polygon that are currently incident at p. Then intersections
are found and resolved by two nested loops, where the outer loop runs over all edges e of the
polygon and the inner loop runs over all edges e ′ whose projection onto the x-axis overlaps with e .

Handling Collinearities. We note that collinear edges need special care, because a 2-opt move
applied to collinear edges need not always result in a shortening of the perimeter of the polygon.
Worse, we might get into a two-opt cycle that keeps swapping collinear edges forth and back. To
guarantee that the perimeter of the polygon decreases strictly monotonically, we

(1) ensure that consecutive edges of the polygon that are collinear do not overlap each other,
and

(2) refine the 2-opt move for non-consecutive edges that overlap.

If the polygon under consideration contains a vertex sequence (. . . ,vi ,vi+1, . . . ,vj−1,vj , . . .) of
three or more consecutive vertices that are collinear, then we arrange these vertices in lexico-
graphical order. In the example depicted in Figure 3(b), where j = i +4, re-arranging these vertices
either (as depicted) in descending lexicographical order (vi+1,vi+4,vi ,vi+3,vi+2) or in ascending
lexicographical order (vi+2,vi+3,vi ,vi+4,vi+1) ensures we reduce the perimeter of the polygon.
Thus, in this example, we could choose the order randomly. If only one order reduces the perime-
ter of the polygon, then this order is chosen. (A simple case analysis shows that at least one of the
two orders always reduces the perimeter.)

Now suppose that the polygon under consideration contains vertex sequences (. . . ,vi−2,
vi−1,vi ,vi+1,vi+2, . . .) and (. . . ,vj−2,vj−1,vj ,vj+1,vj+2, . . .) such that the edges vi ,vi+1 and
vj ,vj+1 are collinear and overlap. We get two basic geometric scenarios of how these edges can

4If p .x denotes the x coordinate and p .y denotes the y coordinate of the point p , then p is lexicographically smaller than

the point q precisely if either p .x < q .x or p .y < q .y in case of p .x = q .x .

ACM Journal of Experimental Algorithmics, Vol. 27, No. 2, Article 2.7. Publication date: March 2022.

2.7:6 G. Eder et al.

Fig. 3. Details of the edge replacements if edges intersect or overlap.

interact; see Figure 3(c) and (d). If vj lies on vi ,vi+1 and vi lies on vj ,vj+1, as shown in Figure 3(c),
then we resolve the overlap by considering the new vertex sequences (. . . ,vi−2,vi−1,vj−1,vj−2, . . .)
and (. . . ,vi+2,vi+1,vj ,vi ,vj+1,vj+2, . . .). If bothvi andvi+1 lie onvj ,vj+1, as shown in Figure 3(d),
then we resolve the overlap by considering the new vertex sequences (. . . ,vi−2,vi−1,vi+2,vi+3, . . .)
and (. . . ,vj−1,vj ,vi+1,vi ,vj+1,vj+2, . . .). Note that the new vertex sequence, once again, may con-
tain new intersections. However, it is easy to see that such a (generalized) 2-opt move reduces the
perimeter of the polygon in both scenarios. Hence, this modification of the standard 2-opt moves
guarantees that we will end up with a simple polygon even in the presence of collinear input points.

3.2 PAO-Flip

The flipping and inverting methods were implemented in C++ in our optimizer Pao-Flip. Its input
is a polygonization P. Without loss of generality, assume that we seek a Min-Area polygonization.
Since inverting can be seen as a special case of flipping, we focus on describing our approach to
flipping.

We use Shewchuk’s Triangle [14] to construct a constrained Delaunay triangulation ofCH (P),
with the edges of P forming the constraints. By taking advantage of the triangulation, we can
easily identify candidates for a flip. A candidate pair consists of two triangles such that we can flip
the adjacent boundary, as described in Section 2.2 and shown in Figure 2.

Pao-Flip scans P until it arrives at a reflex vertexvi where the exterior triangle Δ(vi−1,vi ,vi+1)
is empty. Due to an oversight in the implementation of the algorithm that was discovered only
recently, well after the end of our work, the symmetric case of convex verticesvi , where the triangle
Δ(vi−1,vi ,vi+1) is an interior triangle, was not considered in our implementation. Hence, there may
have been invert/flip operations that were not considered and that might have further improved
our results.

Emptiness of such a triangle can easily be checked by considering the end-points of all trian-
gulation edges incident to vi that are outside of P. Then Pao-Flip iterates through the interior
triangles incident at vi and identifies the triangle Δ(vi ,vj ,vj+1) with maximal area and that is in-
cident to a boundary edge. Let Ae denote the area of that exterior triangle, and let Ai denote the

ACM Journal of Experimental Algorithmics, Vol. 27, No. 2, Article 2.7. Publication date: March 2022.

2-Opt Moves and Flips for Area-optimal Polygonizations 2.7:7

area of the interior triangle. If Ai > Ae , then we apply flipping and decrease the area bounded
by P. We continue the scan along P and repeat this process until all reflex vertices have been
visited.

This basic approach runs in O (n) time, because we look at every reflex vertex at most once and
we have a linear number of triangulation edges that are examined at most twice. Our tests quickly
demonstrated that the polygonizations obtained were not necessarily area-optimal or even very
close to area-optimal.

Hence, we introduce randomness by weakening the greediness of our approach: We allow flip-
ping whenever vi has at least one incident interior triangle with area Ai such that Ai > Ae . The
actual triangle to be flipped is chosen uniformly at random from all interior triangles whose area
is greater than Ae . Furthermore, we visit the vertices in random order. This modification does not
change the overall runtime, since we iterate over all triangles, store the relevant triangle indices,
and then choose an index at random.

Furthermore, we increase the number of candidates available for flipping at a reflex vertex vi

by first modifying the triangulation. Rather than sticking to the original constrained Delaunay
triangulation during the entire optimization, we apply standard edge flipping: Whenever two ad-
jacent interior triangles form a convex quadrilateral, we could flip their common diagonal. A linear
number of random edge flips is applied between rounds of triangle flipping.

4 RESULTS

In addition to attempting to compute Min-Area/Max-Area-polygonizations, we subjected our
codes to various tests. All runtime experiments were run on an Intel Core i7-6700 CPU clocked
at 3.40 GHz, with 256 KiB L1 cache, 1 MiB L2 cache and 8 MiB L3 cache. Figure 4 shows a plot of
the runtimes for the input sets of the Challenge, except for one input with one million points. As
predicted by theory, both RPG-space and RPG-star show a slightly super-linear complexity and
seem to run in roughly 10−7 n lnn seconds. Among the different variants of the 2-opt algorithm,
the brute-force intersection checking of BF-2opt is slowest and the rightwards/leftwards sweep of
SPG-reverse is fastest for polygonizations of at least 103 input points. For such inputs, SPG-reverse
is roughly 25 times faster than BF-2opt, and still about 6 to 8 times faster than the other variants
based on line sweeping. It is not surprising that BF-2opt works better the smaller the input is.

To get a better understanding of our Spg variants, we investigated their main characteristics by
running each of them 100 times per instance. The left plot of Figure 5 shows how often SPG-resolve
and SPG-loop restart from scratch to pass over all edges and how often SPG-reverse reverses the
sweep direction from rightwards to leftwards. The plot indicates a barely super-linear growth rate
of the number of reversals and a clearly sub-linear growth rate of the number of passes. However,
keep in mind that each new pass of SPG-resolve and SPG-loop involves scanning all edges once
again, while SPG-reverse avoids the scanning of edges that are known to contain no intersections.

The right plot of Figure 5 tells us that SPG-reverse performs fewer 2-opt moves to obtain a
polygonization than SPG-resolve and SPG-loop. Furthermore, SPG-loop again fares better than
SPG-resolve. The numbers of 2-opt moves of all three variants seem to have a slightly super-linear
growth rate. That is, the number of 2-opt moves observed in our experiments always stayed far
below the cubic worst-case bound established by van Leeuwen and Schoone [15]. (But it is not
particularly surprising that our tests failed to make this bound evident, since we tested far too few
samples relative to the huge sample spaces of all polygons defined by n vertices.)

These plots support our understanding that SPG-reverse requires fewer computational steps
than SPG-loop, which in turn is better than SPG-resolve. This conclusion is reflected by the run-
times shown in Figure 4.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 2, Article 2.7. Publication date: March 2022.

2.7:8 G. Eder et al.

Fig. 4. Runtimes of different polygon samplers.

Fig. 5. Number of passes/reversals of our Spg variants, and number of 2-opt moves carried out.

Our basic assumption during this work was that a polygonization with small (respectively, large)
area is more likely to be obtained by our optimizer Pao-Flip if the initial polygonization has already
a comparatively small (respectively, large) area. A second initial assumption was that it would not
matter which particular heuristic generated the initial polygon. To probe this claim we analyzed
the percentage of the convex hull of a point set that was covered by the interior of an actual
polygonization. Figure 6 shows that RPG-space tends to generate initial polygonizations with
larger area than RPG-star. We use the same scoring scheme as in the Challenge: The score for
an instance is the ratio given by the area achieved divided by the area of the convex hull. Thus, a
lower value is better for Min-Area, whereas a larger value is better for Max-Area.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 2, Article 2.7. Publication date: March 2022.

2-Opt Moves and Flips for Area-optimal Polygonizations 2.7:9

Fig. 6. Area distribution of randomly sampled polygonizations with Rpg and Spg and the area of approximate
TSP tours by LKH.

No obvious winner is discernible among the 2-opt variants: For each input size of the Challenge,
the distribution of the area of a polygonization seems to be roughly uniform within about the
same range. Figure 7, where we study the area distribution of a number of polygon samples on
two specific point sets, also makes it apparent that the area of samples generated by RPG-star
is, on average, comparatively smaller than those of other samples. Looking at the extreme ends
of the samples in Table 1(a), we note that within this test-run, the smallest area for the small

ACM Journal of Experimental Algorithmics, Vol. 27, No. 2, Article 2.7. Publication date: March 2022.

2.7:10 G. Eder et al.

Fig. 7. Histograms of the area distribution of random polygons of the two input point sets
uniform-0000060-1 (see also Figure 8) and uniform-0006000-1 created using RPG-space, RPG-star, and
SPG-loop. Sample size was 108 and 106, respectively. See Table 1(a) for the smallest and largest area found.

Table 1. (a) Largest and Smallest Area Found (as Percentage of the Convex Hull) in the Test-runs from
Figure 7, with the Cell of the Best Result Highlighted. Additionally, We Show Our Final Smallest and
Biggest Area Found During the Competition After Running Our Optimizers on the Sampled Polygons.

(b) Percentage Values for the Initial Polygonizations that Resulted in Min-Area/Max-Area Polygonizations

uniform-0000060-1 uniform-0006000-1
Heuristic Min-Area Max-Area Min-Area Max-Area
RPG-space 31.07% 73.33% 47.82% 52.54%
RPG-star 31.15% 64.60% 42.51% 46.43%
SPG-loop 30.37% 76.11% 47.89% 52.40%
optimized 15.37% 87.31% 19.48% 69.43%

(a)

Heuristic Min-Area Max-Area
2opt 22% 87%
PAO-mono 4% 2%
RPG-space 20% 11%
RPG-star 7% —
LKH 47% —

(b)

60-vertex input was actually found by SPG-loop. For the bigger point set, however, RPG-star wins
the smallest sample by a huge margin.

Table 1(b) lists the percentage values for the ancestry of our final Min-Area/Max-Area polygo-
nizations. (In that table all 2-opt variants of RPG-2opt, BF-2opt and Spg are summarized as 2opt.)
We were surprised to learn that about 47 % of our final Min-Area polygonizations came from ini-
tial polygonizations obtained by running LKH, i.e., from (approximate) TSP tours, while none of
our final Max-Area polygonizations stems from a TSP tour. Apparently, it was easier for Pao-Flip
to trade large-area triangles for small-area triangles if the initial polygonization did not contain
chains that zigzag wildly. At any rate, it seems that the initially smaller sizes for polygons pro-
duced by RPG-star did not help at the optimizing step in most cases. For some (very) small inputs

ACM Journal of Experimental Algorithmics, Vol. 27, No. 2, Article 2.7. Publication date: March 2022.

2-Opt Moves and Flips for Area-optimal Polygonizations 2.7:11

Fig. 8. Sample Min-Area/Max-Area polygonizations for uniform-0000060-1 obtained by our flipping/
inverting approach.

the initial polygonization produced by 2opt was already optimal or, at least, could not be improved
by Pao-Flip.

Note that the Challenge did not specify a time limit per instance. As the only time limit was given
by the final deadline for submitting our results, we kept applying our heuristics and optimization
procedures for as long as the competition remained open and whenever we had some capacity to
spare on our systems. Instances subject to further sampling or optimization runs were selected at
random, with each individual job limited to an hour of CPU time.

5 DISCUSSION

Sample results for Min-Area/Max-Area polygonizations are shown in Figure 8. The surprisingly
larger percentage of final Min-Area polygonizations derived from initial TSP tours made us re-
consider our basic assumption that a Max-Area (respectively, Min-Area) polygonization would
be obtained best by applying Pao-Flip to an initial polygonization with a reasonably large (respec-
tively, small) area. Perhaps we should have been less greedy and should have applied Pao-Flip
randomly to initial polygonizations, without consideration of whether or not the initial polygo-
nization has a reasonably small or large area.

During the tail end of the competition time we noticed that the optimization using Pao-Flip
can get stalled at local maxima or minima, with nothing to gain by further flipping. Future work
could explore the use of simulated annealing (or similar) to allow Pao-Flip to get away from local
minima/maxima. For instance, while looking for a Min-Area polygonization, one could allow
some flipping that increases the area of the polygonization. We leave the exploration of these
variants to future research.

We note that every polygonization has a positive probability to appear as one of our starting
polygonization. (Recall that all 2-opt variants start by generating random sequences of the input
points, which form the seed polygons for the subsequent heuristics.) From a theoretical point
of view it is interesting to ask whether the space of all polygonizations is connected under the
invert/flip operations discussed in Section 2.2. So, given two polygonizations P1,P2 on the same
set of input points, is it always possible to derive P2 from P1 via a series of invert/flip operations?
We suppose this to be true but can only prove it for the class of x-monotone polygonizations. And

ACM Journal of Experimental Algorithmics, Vol. 27, No. 2, Article 2.7. Publication date: March 2022.

2.7:12 G. Eder et al.

if this conjecture were true: What is a tight bound on the number of invert/flip operations needed
in the worst case to derive P2 from P1?

REFERENCES

[1] Thomas Auer and Martin Held. 1996. Heuristics for the generation of random polygons. In Proceedings of the 8th

Canadian Conference on Computational Geometry (CCCG’96). 38–44.

[2] Jon L. Bentley and Thomas A. Ottmann. 1979. Algorithms for reporting and counting geometric intersections. IEEE

Trans. Comput. 28, 9 (September 1979), 643–647. https://doi.org/10.1109/TC.1979.1675432

[3] G. A. Croes. 1958. A method for solving traveling-salesman problems. Operat. Res. 6, 6 (1958), 791–812. https://doi.

org/10.1287/opre.6.6.791

[4] Loïc Crombez, Guilherme D. da Fonseca, and Yan Gerard. 2021. Greedy and local search solutions to the minimum

and maximum area. ACM J. Experimental Algorithmics (2021).

[5] Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S.B. Mitchell. 2021. Area-optimal

simple polygonalizations: The CG challenge. ACM J. Experimental Algorithmics (2021).

[6] Günther Eder, Martin Held, Steinþór Jasonarson, Philipp Mayer, and Peter Palfrader. 2020. Salzburg database of polyg-

onal data: Polygons and their generators. 31 (August 2020), 105984. https://doi.org/10.1016/j.dib.2020.105984

[7] Alfredo García, Marc Noy, and Javier Tejel. 2000. Lower bounds on the number of crossing-free subgraphs of KN .

Comput. Geom.: Theory Appl. 16, 4 (August 2000), 211–221. https://doi.org/10.1016/S0925-7721(00)00010-9

[8] Nir Goren, Efi Fogel, and Dan Halperin. 2021. Area-optimal polygonization using simulated annealing (unpublished).

[9] Martin Held. 2001. FIST: Fast industrial-strength triangulation of polygons. Algorithmica 30, 4 (2001), 563–596. https:

//doi.org/10.1007/s00453-001-0028-4

[10] Keld Helsgaun. 2000. An effective implementation of the lin-kernighan traveling salesman heuristic. Eur. J. Operat.

Res. 126, 1 (Oct. 2000), 106–130. https://doi.org/10.1016/S0377-2217(99)00284-2

[11] Julien Lepagnot, Laurent Moalic, and Dominique Schmitt. 2021. Optimal area polygonization by triangulation and

ray-tracing. ACM J. Experimental Algorithmics.

[12] Shen Lin and Brian W. Kernighan. 1973. An effective heuristic algorithm for the traveling-salesman problem. Operat.

Res. 21, 2 (1973), 498–516. https://doi.org/10.1287/opre.21.2.498

[13] Natanael Ramos, Raí C. de Jesus, Pedro de Rezende, Cid de Souza, and Fábio L. Usberti. 2021. Heuristics for area

optimal polygonizations. ACM J. Experimental Algorithmics (2021).

[14] Jonathan R. Shewchuk. 1996. Triangle: Engineering a 2D quality mesh generator and delaunay triangulator. In Applied

Computational Geometry: Towards Geometric Engineering. Lecture Notes in Computer Science, Vol. 1148. Springer-

Verlag, 203–222.

[15] Jan van Leeuwen and Anneke A. Schoone. 1982. Untangling a travelling salesman tour in the plane. In Proceedings of

the 7th Conference Graph-theoretic Concepts in Computer Science (WG’81), J. R. Mühlbacher (Ed.). 87–98.

[16] Chong Zhu, Gopalakrishnan Sundaram, Jack Snoeyink, and Joseph S.B.Mitchell. 1996. Generating random polygons

with given vertices. Comput. Geom.: Theory Appl. 6, 5 (1996), 277–290. https://doi.org/10.1016/0925-7721(95)00031-3

Received January 2021; revised June 2021; accepted November 2021

ACM Journal of Experimental Algorithmics, Vol. 27, No. 2, Article 2.7. Publication date: March 2022.

https://doi.org/10.1109/TC.1979.1675432
https://doi.org/10.1287/opre.6.6.791
https://doi.org/10.1016/j.dib.2020.105984
https://doi.org/10.1016/S0925-7721(00)00010-9
https://doi.org/10.1007/s00453-001-0028-4
https://doi.org/10.1016/S0377-2217(99)00284-2
https://doi.org/10.1287/opre.21.2.498
https://doi.org/10.1016/0925-7721(95)00031-3

