
On Generating Polygons:
Introducing the Salzburg Database∗

Günther Eder1, Martin Held1, Steinþór Jasonarson1, Philipp
Mayer1, and Peter Palfrader1

1 Universität Salzburg, FB Computerwissenschaften, Salzburg, Austria,
{geder,held,sjas,pmayer,palfrader}@cs.sbg.ac.at

Abstract
The Salzburg Database is a repository of polygonal areas of various classes and sizes, with and
without holes. Positive weights are assigned to all edges of all polygons. We introduce this
collection and briefly describe the generators that produced its polygons. The source codes for
all generators as well as the polygons generated are publicly available.

1 Introduction

An important part of software development is testing the correctness and evaluating the
performance of an algorithm implementation. Ideally, one would run the code on data of
practical relevance. However, it often is next to impossible to obtain enough practically
relevant inputs. Then the second-best choice is to run an algorithm for a reasonably large
number of “random” inputs. Subjecting the code to inputs of different characteristics is
important since this may help to trigger different execution paths. Similarly, a large range
of input sizes is needed to obtain insights in the actual runtime and memory consumption.
This allows for comparing different implementations in a meaningful way.

Our goal with the Salzburg Database is to provide a repository of data for such testing
purposes. The initial content of the Salzburg Database is purely polygonal, containing
simply-connected and multiply-connected polygonal areas in two dimensions.

Every polygon has positive weights assigned to its edges. These weights can be used
to test codes that operate on weighted polygonal input, such as for computing weighted
straight skeletons. The file format is extensible, so we can also add vertex-weights and other
information such as edge or vertex colorings in the future.

We note that this is work in progress. In particular, we are still evaluating the generators
and the characteristics of the polygons generated by them. Hence, we expect to see some
fine tuning of the generators in the near future. In the sequel we describe the database and
its generators.

2 Generators

Generating simple polygons is not a new problem. For convex and x-monotone polygons, Zhu
et al. [9] propose a solution to generate them uniformly at random. Tomás and Bajuelos [7]
introduce a quadratic-time algorithm to generate random polygons on a grid. Dailey and
Whitfield [3] describe a heuristic that takes O(n log n) time to compute a simple polygon.
They start from a randomly chosen triangle followed by repetitive edge subdivision. Sedhu
et al. [5] introduce a different heuristic, which constructs a random polygon starting from
the convex hull of a given point set. They randomly select a vertex inside the hull and add

∗ Work supported by Austrian Science Fund (FWF): Grants ORD 53-VO and P31013-N31.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



75:2 On Generating Polygons — Salzburg Database

it to the polygon while maintaining the simplicity using visibility checks. Later, Sedhu et
al. [6] introduce a different approach that uses the convex layers of a given point set and
constructs a simple polygon in O(n log n) time.

As this brief overview of the literature demonstrates, clearly some research has been
devoted to this topic. Here, we present our generators and their actual implementations,
some of which, like Rpg (Section 2.4) or Fpg (Section 2.1), implement algorithms from, or
inspired by, literature.

2.1 Triangulation Perturbation
Our implementation Fpg is motivated by an approach originally proposed by O’Rourke
and Virmani [4]: They start with a regular polygon P and then translate its vertices while
maintaining the polygon’s simplicity. A direction and speed are chosen at random and
assigned to each vertex of P. Then, the vertices of P are processed consecutively. A single
vertex is moved one “time unit” as long as P remains simple, otherwise that move is omitted
and a new random velocity is chosen for the next round. O’Rourke and Virmani [4] suggest
to use several hundred translations per vertex.

As vertices can also move in an outward direction, a domain is defined which has to
contain P. We use a large rectangle to limit the outward movement of the vertices.

(a)

v

v′#–
t

el
e′l

er

e′r

(b)

v
el

er

(c)

Figure 1 (a) Triangulation of the start polygon and its domain; (b) Translation of vertex v by
the vector #–

t ; (c) The polygon after the translation.

Maintaining the simplicity of P during the vertex translations can be an expensive task if
carried out naively. We utilize a triangulation of the interior and the exterior of P to simplify
intersection tests while moving a polygon vertex; cf. Figure 1a. Let v denote a boundary
vertex of P that we want to translate and let el and er denote its two incident edges. In
practice, a randomly chosen translation vector #–

t tends to violate the simplicity of P, with
high probability, which leads to a bad performance. Therefore, we choose a random direction
for #–

t first. Then, the length of #–
t is generated from a normal distribution using parameters

suitable to the local environment around v, in the chosen direction. Experiments show that
such an approach for choosing translation vectors produces only few invalid translations.

After translating v by #–
t , we obtain v′ and the edges e′

l and e′
r, respectively. Our

intersection test involves checking all triangles pierced by e′
l or e′

r. In case all triangle
edges intersected by e′

l and e′
r are interior or exterior diagonals, we change v into v′ in P.

Additionally, we may have to modify the triangulation by checking the triangles intersected
by the modified edges as well as the triangles incident at v. If we cross a polygon edge,



G. Eder, M. Held, S. Jasonarson, P. Mayer, and P. Palfrader 75:3

we reject #–
t as translation vector and restart the process. See an example of this process

illustrated in Figures 1b and 1c.
Fpg starts from a regular polygon where a triangulation, in- and outside, is trivially

obtained. To speed up the generation of large polygons, instead of starting with a large reg-
ular polygon, Fpg can start with a smaller one, and then “grow” this polygon by repeatedly
splitting random edges. The additional vertex introduced by the split is then translated to
avoid collinearities.

Figure 2 Polygon exhibiting cluster-
ing due to the selection of edges uniformly
at random in the subdivision step.

If we pick edges uniformly at random, we see
clusters of many short edges and a few very long
edges. This presumably is due to the fact that areas
with short edges are more likely to get extra vertices
than areas of the same size which contain (fewer)
long edges; cf. Figure 2. To avoid this clustering,
we instead pick edges randomly weighted by their
length.

Furthermore, Fpg is capable of generating poly-
gons with holes. Since P is regular at the beginning,
we can trivially place regular holes inside P as well.
The described process works also for this setting,
as the intersection tests hinge on the triangulation.
In Figure 3 we illustrate the evolution of a poly-
gon computed by Fpg, the polygon has 10 vertices,
with a triangular hole formed by three additional
vertices. The first two images in Figure 4 are the
result of Fpg using edge-subdivision; the second
image depicts a polygon with holes.

Figure 3 Polygon generated by Fpg after 1, 8, 50, and 500 iterations without edge-subdivision.

2.2 Combining Line Sweep and 2-Opt Moves
Our generator Spg constructs a simple polygon P on a given point set S in the plane. (Such a
point set can be generated randomly or specified by a user.) Initially, Spg creates a polygon
by choosing a random permutation of the input vertices. This start-polygon contains, with
high probability, self-intersections. Therefore, a line sweep is applied to identify intersecting
pairs of edges, followed by local modifications which remove these intersections.

To identify pairs of edges that intersect we use the classic Bentley-Ottmann algorithm [2].
We sweep from left to right, thereby maintaining a sorted set of edges that intersect the
sweep-line. The input vertices comprise the event points of the line sweep. During the sweep,
at vertex vi, we have to modify the sweep-line status by removing and/or adding the edges

EuroCG’20



75:4 On Generating Polygons — Salzburg Database

Figure 4 Left-to-right: A polygon and a polygon with holes computed by Fpg, and a polygon
generated by Spg.

incident at vi. Additionally, at every event point, we have to verify that any newly added
edge is not intersecting its neighbors in the status. In case a pair of edges does intersect, we
have to resolve that intersection before we carry on with the sweep.

We resolve intersections by applying so-called 2-opt moves. A 2-opt move replaces the
edges e1 = v1v2 and e2 = v3v4 by the edges e′

1 = v1v3, e′
2 = v2v4. (Note that the polygon

boundary becomes disconnected if the 2-opt move connects the wrong vertex pairs.) As
we apply 2-opt moves during the line sweep to resolve intersections, we may introduce new
intersections. However, a key property of the 2-opt move is that it decreases the length of
the polygon (if not all points are collinear). This guarantees that we will eventually arrive
at a polygon that is simple if we apply 2-opt moves repeatedly to resolve intersections. A
result by van Leeuwen and Schoone [8] tells us that we need at most O(n3) 2-opt moves.

We implemented and tested three variants of the line sweep. They differ mainly in how
they proceed after finding and resolving an intersection: (a) After a 2-opt move is carried
out, we simply continue with the line sweep. After arriving at the right-most vertex we
restart the line sweep at the left-most vertex. The sweep is repeated until all intersections
are resolved. (b) After a 2-opt move, we test and resolve all intersections at the current
sweep-line position, before carrying on. Again, at the right-most vertex we restart until all
intersections are resolved. (c) After a 2-opt move, we reverse the sweep direction to deal
with possibly new edge intersections. We resume our rightwards sweep at the left-most
vertex affected by the 2-opt move. The last image in Figure 4 was generated by Spg on a
point set of 40 vertices using sweep-variant (a).

Note that collinear edges need special care because a 2-opt move will not always result
in a shortening of the perimeter of the polygon. If intersecting collinear edges are detected,
then we remove these edges and sort the respective collinear vertices. Then, we connect the
vertices by edges in consecutive order, i.e., form a chain of non-overlapping collinear edges.
This guarantees that the perimeter of the polygon decreases also in the case of collinear
vertices.

2.3 SRPG
Srpg generates simply-connected and multiply-connected polygonal areas by means of a
regular grid that consists of square cells. Given two integer values, a and b, Srpg generates
a grid of size a times b. By default Srpg then generates orthogonal polygons on this grid.
An additional parameter p, between zero and one, leads to a smaller or larger number of
vertices in the produced polygon. Srpg is able to produce octagonal polygons by cutting off



G. Eder, M. Held, S. Jasonarson, P. Mayer, and P. Palfrader 75:5

corners with ±45° diagonals during the construction. Cutting corners repeatedly, without
the diagonal restriction, yields an approximation of a smooth free-form curve. Additionally,
Srpg can apply perturbations in order to generate polygons with axes-parallel edges whose
vertices do not lie on a grid, or to generate polygons whose edges (in general) are not parallel
to the coordinate axes. See Figure 5 for some sample polygons.

Figure 5 Samples of a random, an orthogonal, an octagonal, and a smoothed polygon generated
by Srpg, as well as a random and a grid-aligned orthogonal polygon with holes.

2.4 RPG
Auer and Held [1] first described Rpg more than twenty years ago. Rpg supports various
heuristics to generate “random” polygons for a given set of vertices. In particular, it is
able to produce star-shaped polygons uniformly at random. Furthermore, it generates x-
monotone polygons uniformly at random, based on the algorithm by Zhu et al. [9]. We have
resurrected this code and updated it to compile on modern platforms, thus meeting requests
voiced by several colleagues. A recent extension of Rpg also supports the generation of
polygons with holes. See Figure 6 for examples of some polygons generated by Rpg.

EuroCG’20



75:6 On Generating Polygons — Salzburg Database

Figure 6 In left-to-right order, an x-monotone, a star-shaped, and a simple polygon computed
by Rpg on 30 vertices.

2.5 Additional Generators

Our repository also contains codes to produce well-known polygons such as the Koch snowflake
(also in a nested variant), the Sierpinski curve, and closed variants of the Hilbert and
Lebesgue curves; see Figure 7.

3 Salzburg Database

The Salzburg Database is available at https://sbgdb.cs.sbg.ac.at/. Since this is work-
in-progress, we expect to add additional data-sets and generators in the near future. The
database can be used freely and is provided via direct download or git.

Currently, all our generators are written in C++ or plain C. However, we are not averse
to adding code written in other languages such as Python. All source code available on
GitHub (https://github.com/cgalab) and can be used freely under the GPL(v3) license.

We conclude this survey of the Salzburg Database with a call for participation. If you
have “interesting” polygons or data-sets you like to have included then, please, send them
to us. You are also welcome to to contact us if you have an interest in a specific class of
polygons that is missing.

References

1 T. Auer and M. Held. Heuristics for the Generation of Random Polygons. In Proceedings
of the 8th Canadian Conference on Computational Geometry (CCCG), pages 38–44, 1996.

2 J. L. Bentley and T. A. Ottmann. Algorithms for Reporting and Counting Geometric
Intersections. IEEE Transactions on Computers, 28(9):643–647, 1979.

3 D. Dailey and D. Whitfield. Constructing Random Polygons. In Proceedings of the 9th
ACM SIG-Information Technology Education Conference (SIGITE), pages 119–124, 2008.

4 J. O’Rourke and M. Virmani. Generating random polygons. Technical report, Smith
College, Northampton, MA 01063, USA, 1991.

5 S. Sadhu, S. Hazarika, K. Jain, S. Basu, and T. De. GRP_CH Heuristic for Generat-
ing Random Simple Polygon. In International Workshop on Combinatorial Algorithms
(IWOCA), 2012.

6 S. Sadhu, N. Kumar, and B. Kumar. Random Polygon Generation through Convex Layers.
Procedia Technology, 10:356–364, 2013.

https://sbgdb.cs.sbg.ac.at/
https://github.com/cgalab
https://www.gnu.org/licenses/gpl-3.0.html


G. Eder, M. Held, S. Jasonarson, P. Mayer, and P. Palfrader 75:7

Figure 7 The curves of Koch, Sierpinski, Hilbert, and Lebesgue, in reading order. Each figure
is partitioned into four quadrants which portions of the curve at different orders.

7 A. Tomás and A. Bajuelos. Quadratic-Time Linear-Space Algorithms for Generating Or-
thogonal Polygons with a given Number of Vertices. In Computational Science and Its
Applications (ICCSA), pages 117–126, 2004.

8 J. van Leeuwen and A. A. Schoone. Untangling a Travelling Salesman Tour in the Plane. In
J. Mühlbacher, editor, Proc. 7th Conference Graph-theoretic Concepts in Computer Science
(WG’81), pages 87–98, 1982.

9 C. Zhu, G. Sundaram, J. Snoeyink, and J. Mitchell. Generating Random Polygons with
Given Vertices. Computational Geometry: Theory and Applications, 6(5):277–290, 1996.

EuroCG’20


	Introduction
	Generators
	Triangulation Perturbation
	Combining Line Sweep and 2-Opt Moves
	SRPG
	RPG
	Additional Generators

	Salzburg Database

