Weighted Voronoi Diagrams in the L_{∞} -Norm

Günther Eder and Martin Held

Budapest, June 2018

Definition

- Given a set S of *n* sites in \mathbb{R}^2 .
- Every site s of S defines a region *R*(s) that contains all points of R² closer to s than to any other site.
- The Voronoi diagram $\mathcal{V}(S)$ is the union of the boundaries of all *n* regions.

 s_2

 s_1

Definition

- Given a set S of *n* sites in \mathbb{R}^2 .
- Every site s of S defines a region *R*(s) that contains all points of R² closer to s than to any other site.
- The Voronoi diagram $\mathcal{V}(S)$ is the union of the boundaries of all *n* regions.

Definition

- Given a set S of *n* sites in \mathbb{R}^2 .
- Every site s of S defines a region *R*(s) that contains all points of R² closer to s than to any other site.
- The Voronoi diagram $\mathcal{V}(S)$ is the union of the boundaries of all *n* regions.

Definition

- Given a set S of *n* sites in \mathbb{R}^2 .
- Every site s of S defines a region *R*(s) that contains all points of R² closer to s than to any other site.
- The Voronoi diagram $\mathcal{V}(S)$ is the union of the boundaries of all *n* regions.

Computation

- Can be computed in $\mathcal{O}(n \log n)$ time and linear space.
- Fortune's sweep line algorithm [2].
- Papadopoulou and Lee[3] show that the Voronoi diagram in the L_{∞} -metric can be computed using a sweep line as well.

Definition

- Given a set S of *n* sites in \mathbb{R}^2 .
- Every site s of S defines a region *R*(s) that contains all points of R² closer to s than to any other site.
- The Voronoi diagram $\mathcal{V}(S)$ is the union of the boundaries of all *n* regions.

Computation

- Can be computed in $\mathcal{O}(n \log n)$ time and linear space.
- Fortune's sweep line algorithm [2].
- Papadopoulou and Lee[3] show that the Voronoi diagram in the L_{∞} -metric can be computed using a sweep line as well.

Definition

- Let $S := \{s_1, \ldots, s_n\}$ a set of *n* weighted sites in \mathbb{R}^2 and let $w : S \to \mathbb{R}^+$ a weight function.
- The region R(s) contains all points of ℝ² closer to s than to any other site of S measured by d_w(p, s) := d(p,s)/w(s), where d(p, s) provides the distance in the respective metric.
- $\mathcal{V}(S) := \bigcup_{0 < i < n} \partial \mathcal{R}(s_i)$, where ∂ denotes the boundary.

Definition

- Let $S := \{s_1, \ldots, s_n\}$ a set of *n* weighted sites in \mathbb{R}^2 and let $w : S \to \mathbb{R}^+$ a weight function.
- The region R(s) contains all points of ℝ² closer to s than to any other site of S measured by d_w(p, s) := d(p,s)/w(s), where d(p, s) provides the distance in the respective metric.

• $\mathcal{V}(S) := \bigcup_{0 < i < n} \partial \mathcal{R}(s_i)$, where ∂ denotes the boundary.

Definition

- Let $S := \{s_1, \ldots, s_n\}$ a set of *n* weighted sites in \mathbb{R}^2 and let $w : S \to \mathbb{R}^+$ a weight function.
- The region R(s) contains all points of ℝ² closer to s than to any other site of S measured by d_w(p, s) := d(p,s)/w(s), where d(p, s) provides the distance in the respective metric.
- $\mathcal{V}(S) := \bigcup_{0 < i < n} \partial \mathcal{R}(s_i)$, where ∂ denotes the boundary.

Definition

- Let $S := \{s_1, \ldots, s_n\}$ a set of *n* weighted sites in \mathbb{R}^2 and let $w : S \to \mathbb{R}^+$ a weight function.
- The region R(s) contains all points of ℝ² closer to s than to any other site of S measured by d_w(p, s) := d(p,s)/w(s), where d(p, s) provides the distance in the respective metric.
- $\mathcal{V}(S) := \bigcup_{0 < i < n} \partial \mathcal{R}(s_i)$, where ∂ denotes the boundary.

- Aurenhammer and Edelsbrunner[1] introduce a worst case optimal approach to compute the weighted Voronoi diagram for L_2 in $\mathcal{O}(n^2)$ time and space.
 - The bisector between two weighted sites in L_2 forms a circle.
 - Spherical inversion.
 - Half-space intersection.

Definition

- Let $S := \{s_1, \ldots, s_n\}$ a set of *n* weighted sites in \mathbb{R}^2 and let $w : S \to \mathbb{R}^+$ a weight function.
- The region R(s) contains all points of ℝ² closer to s than to any other site of S measured by d_w(p, s) := d(p,s)/w(s), where d(p, s) provides the distance in the respective metric.
- $\mathcal{V}(S) := \bigcup_{0 < i < n} \partial \mathcal{R}(s_i)$, where ∂ denotes the boundary.

- Aurenhammer and Edelsbrunner[1] introduce a worst case optimal approach to compute the weighted Voronoi diagram for L_2 in $\mathcal{O}(n^2)$ time and space.
 - The bisector between two weighted sites in L_2 forms a circle.
 - Spherical inversion.
 - Half-space intersection.

Definition

- Let $S := \{s_1, \ldots, s_n\}$ a set of *n* weighted sites in \mathbb{R}^2 and let $w : S \to \mathbb{R}^+$ a weight function.
- The region R(s) contains all points of ℝ² closer to s than to any other site of S measured by d_w(p, s) := d(p,s)/w(s), where d(p, s) provides the distance in the respective metric.
- $\mathcal{V}(S) := \bigcup_{0 < i < n} \partial \mathcal{R}(s_i)$, where ∂ denotes the boundary.

- Aurenhammer and Edelsbrunner[1] introduce a worst case optimal approach to compute the weighted Voronoi diagram for L_2 in $\mathcal{O}(n^2)$ time and space.
 - The bisector between two weighted sites in L_2 forms a circle.
 - Spherical inversion.
 - Half-space intersection.

Definition

- Let $S := \{s_1, \ldots, s_n\}$ a set of *n* weighted sites in \mathbb{R}^2 and let $w : S \to \mathbb{R}^+$ a weight function.
- The region R(s) contains all points of ℝ² closer to s than to any other site of S measured by d_w(p, s) := d(p,s)/w(s), where d(p, s) provides the distance in the respective metric.
- $\mathcal{V}(S) := \bigcup_{0 < i < n} \partial \mathcal{R}(s_i)$, where ∂ denotes the boundary.

- Aurenhammer and Edelsbrunner[1] introduce a worst case optimal approach to compute the weighted Voronoi diagram for L_2 in $\mathcal{O}(n^2)$ time and space.
 - The bisector between two weighted sites in L_2 forms a circle.
 - Spherical inversion.
 - Half-space intersection.

Definition

- Let $S := \{s_1, \ldots, s_n\}$ a set of *n* weighted sites in \mathbb{R}^2 and let $w : S \to \mathbb{R}^+$ a weight function.
- The region R(s) contains all points of ℝ² closer to s than to any other site of S measured by d_w(p, s) := d(p,s)/w(s), where d(p, s) provides the distance in the respective metric.
- $\mathcal{V}(S) := \bigcup_{0 < i < n} \partial \mathcal{R}(s_i)$, where ∂ denotes the boundary.

Related Work

- Aurenhammer and Edelsbrunner[1] introduce a worst case optimal approach to compute the weighted Voronoi diagram for L_2 in $\mathcal{O}(n^2)$ time and space.
 - The bisector between two weighted sites in L_2 forms a circle.
 - Spherical inversion.
 - Half-space intersection.

Our Contribution

- The weighted Voronoi diagram in the L_{∞} -metric, $\mathcal{V}^{\infty}(S)$, has also a worst case $\Theta(n^2)$ combinatorial complexity.
- Incremental construction approach to construct $\mathcal{V}^{\infty}(S)$ in $\mathcal{O}(n^2 \log n)$ time.

Definition

- Let $S := \{s_1, \ldots, s_n\}$ a set of *n* weighted sites in \mathbb{R}^2 and let $w : S \to \mathbb{R}^+$ a weight function.
- The region R(s) contains all points of ℝ² closer to s than to any other site of S measured by d_w(p, s) := d(p,s)/w(s), where d(p, s) provides the distance in the respective metric.
- $\mathcal{V}(S) := \bigcup_{0 < i < n} \partial \mathcal{R}(s_i)$, where ∂ denotes the boundary.

Related Work

- Aurenhammer and Edelsbrunner[1] introduce a worst case optimal approach to compute the weighted Voronoi diagram for L_2 in $\mathcal{O}(n^2)$ time and space.
 - The bisector between two weighted sites in L_2 forms a circle.
 - Spherical inversion.
 - Half-space intersection.

Our Contribution

- The weighted Voronoi diagram in the L_{∞} -metric, $\mathcal{V}^{\infty}(S)$, has also a worst case $\Theta(n^2)$ combinatorial complexity.
- Incremental construction approach to construct $\mathcal{V}^{\infty}(S)$ in $\mathcal{O}(n^2 \log n)$ time.

Two weighted sites in the plane and their bisector in the $\ L_\infty\text{-metric}$.

 $\mathcal{V}^{\infty}(S)$ forms a PSLG^{∞}.

Two weighted sites in the plane and their bisector in the $\ L_\infty$ -metric .

 $\mathcal{V}^{\infty}(S)$ forms a PSLG^{∞}.

Embedding an axis aligned pyramid on each site. The lower envelope of these pyramids, projected to the plane, forms the bisector of the sites.

 $\Omega(n^2)$ is established by worst case example.

(1)

(2)

(5)

(2)

(1)

Place an upside-down pyramid p on every site s. The dihedral angle of p is in respect to w(s).

Place an upside-down pyramid p on every site s. The dihedral angle of p is in respect to w(s). Mapping $\mathcal{V}^{\infty}(S)$ onto the set of pyramids. The projection lies on the lower envelop of the pyramids.

Let $S_k := (s_1, \ldots, s_k)$ be the k sites of S ordered by weight such that $w(s_i) > w(s_{i+1})$, for $0 < i < k \le n$.

Let $S_k := (s_1, \ldots, s_k)$ be the k sites of S ordered by weight such that $w(s_i) > w(s_{i+1})$, for $0 < i < k \le n$.

Let $S_k := (s_1, \ldots, s_k)$ be the k sites of S ordered by weight such that $w(s_i) > w(s_{i+1})$, for $0 < i < k \le n$.

The intersection of a plane (red) with the lower envelope is of size O(n).

Let $S_k := (s_1, \ldots, s_k)$ be the k sites of S ordered by weight such that $w(s_i) > w(s_{i+1})$, for $0 < i < k \le n$.

The intersection of a plane (red) with the lower envelope is of size O(n).

 $\mathcal{V}^\infty(\mathcal{S})$ has at most $\mathcal{O}(n^2)$ faces, edges, and vertices

Let $S_k := (s_1, \ldots, s_k)$ be the k sites of S ordered by weight such that $w(s_i) > w(s_{i+1})$, for $0 < i < k \le n$.

The intersection of a plane (red) with the lower envelope is of size O(n).

 $\mathcal{V}^\infty(\mathcal{S})$ has at most $\mathcal{O}(n^2)$ faces, edges, and vertices

 $\mathcal{V}^{\infty}(S)$ has a $\Theta(n^2)$ combinatorial complexity in the worst case.

We construct $\mathcal{R}(s_k)$ for site s_k of S_k

- Bisector between sites s_k, s_i forms a star-shaped polygon where the site with smaller weight resides in the kernel.
- Intersecting the closure of the bisectors of s_k with s_1, \ldots, s_{k-1} forms $\mathcal{R}(s_k)$ in respect to S_k .
- $\mathcal{R}(s_k)$ forms a star-shaped polygon with s_k in its kernel.
- $\mathcal{R}(s_k)$ is linear in size.

(3)

(4)

(2)

(5)

We construct $\mathcal{R}(s_k)$ for site s_k of S_k

- Bisector between sites s_k , s_i forms a star-shaped polygon where the site with smaller weight resides in the kernel.
- Intersecting the closure of the bisectors of s_k with s_1, \ldots, s_{k-1} forms $\mathcal{R}(s_k)$ in respect to S_k .
- $\mathcal{R}(s_k)$ forms a star-shaped polygon with s_k in its kernel.
- $\mathcal{R}(s_k)$ is linear in size.

(3)

(4)

 s_k

(2)

We construct $\mathcal{R}(s_k)$ for site s_k of S_k

- Bisector between sites s_k , s_i forms a star-shaped polygon where the site with smaller weight resides in the kernel.
- Intersecting the closure of the bisectors of s_k with s_1, \ldots, s_{k-1} forms $\mathcal{R}(s_k)$ in respect to S_k .
- $\mathcal{R}(s_k)$ forms a star-shaped polygon with s_k in its kernel.
- $\mathcal{R}(s_k)$ is linear in size.

(3)

(4)

(2)

- Bisector between sites s_k , s_i forms a star-shaped polygon where the site with smaller weight resides in the kernel.
- Intersecting the closure of the bisectors of s_k with s_1, \ldots, s_{k-1} forms $\mathcal{R}(s_k)$ in respect to S_k .
- $\mathcal{R}(s_k)$ forms a star-shaped polygon with s_k in its kernel.
- $\mathcal{R}(s_k)$ is linear in size.

- Bisector between sites s_k , s_i forms a star-shaped polygon where the site with smaller weight resides in the kernel.
- Intersecting the closure of the bisectors of s_k with s_1, \ldots, s_{k-1} forms $\mathcal{R}(s_k)$ in respect to S_k .
- $\mathcal{R}(s_k)$ forms a star-shaped polygon with s_k in its kernel.
- $\mathcal{R}(s_k)$ is linear in size.

- Bisector between sites s_k , s_i forms a star-shaped polygon where the site with smaller weight resides in the kernel.
- Intersecting the closure of the bisectors of s_k with s₁,..., s_{k-1} forms R(s_k) in respect to S_k.
- $\mathcal{R}(s_k)$ forms a star-shaped polygon with s_k in its kernel.
- $\mathcal{R}(s_k)$ is linear in size.

- Bisector between sites s_k, s_i forms a star-shaped polygon where the site with smaller weight resides in the kernel.
- Intersecting the closure of the bisectors of s_k with s₁,..., s_{k-1} forms R(s_k) in respect to S_k.
- $\mathcal{R}(s_k)$ forms a star-shaped polygon with s_k in its kernel.
- $\mathcal{R}(s_k)$ is linear in size.

- Bisector between sites s_k, s_i forms a star-shaped polygon where the site with smaller weight resides in the kernel.
- Intersecting the closure of the bisectors of s_k with s₁,..., s_{k-1} forms R(s_k) in respect to S_k.
- $\mathcal{R}(s_k)$ forms a star-shaped polygon with s_k in its kernel.
- $\mathcal{R}(s_k)$ is linear in size.

- Compute $\mathcal{R}(s_k)$.
- Compose $\mathcal{V}^{\infty}(S_k)$ from $\mathcal{R}(s_k)$ and $\mathcal{V}^{\infty}(S_{k-1})$.
 - Embed $\mathcal{R}(s_k)$ into $\mathcal{V}^{\infty}(S_{k-1})$.
 - Remove/shorten edges of $\mathcal{V}^{\infty}(S_{k-1})$ inside $\mathcal{R}(s_k)$

- Compute $\mathcal{R}(s_k)$.
- Compose $\mathcal{V}^{\infty}(S_k)$ from $\mathcal{R}(s_k)$ and $\mathcal{V}^{\infty}(S_{k-1})$.
 - Embed $\mathcal{R}(s_k)$ into $\mathcal{V}^{\infty}(S_{k-1})$.
 - Remove/shorten edges of $\mathcal{V}^{\infty}(S_{k-1})$ inside $\mathcal{R}(s_k)$

- Compute $\mathcal{R}(s_k)$.
- Compose $\mathcal{V}^{\infty}(S_k)$ from $\mathcal{R}(s_k)$ and $\mathcal{V}^{\infty}(S_{k-1})$.
 - Embed $\mathcal{R}(s_k)$ into $\mathcal{V}^{\infty}(S_{k-1})$.
 - Remove/shorten edges of $\mathcal{V}^{\infty}(S_{k-1})$ inside $\mathcal{R}(s_k)$

- Compute $\mathcal{R}(s_k)$.
- Compose $\mathcal{V}^{\infty}(S_k)$ from $\mathcal{R}(s_k)$ and $\mathcal{V}^{\infty}(S_{k-1})$.
 - Embed $\mathcal{R}(s_k)$ into $\mathcal{V}^{\infty}(S_{k-1})$.
 - Remove/shorten edges of $\mathcal{V}^{\infty}(S_{k-1})$ inside $\mathcal{R}(s_k)$

Algorithm

- Compute $\mathcal{R}(s_k)$.
- Compose $\mathcal{V}^{\infty}(S_k)$ from $\mathcal{R}(s_k)$ and $\mathcal{V}^{\infty}(S_{k-1})$.
 - Embed $\mathcal{R}(s_k)$ into $\mathcal{V}^{\infty}(S_{k-1})$.
 - Remove/shorten edges of $\mathcal{V}^{\infty}(S_{k-1})$ inside $\mathcal{R}(s_k)$

- Compute $\mathcal{R}(s_k)$ using a D&C approach in $\mathcal{O}(n \log n)$ time.
- Embed $\mathcal{R}(s_k)$ into $\mathcal{V}^{\infty}(S_{k-1})$ in $\mathcal{O}(n \log n)$ time.
- Overall we remove at most $\mathcal{O}(n^2)$ edges, where one removal takes $\mathcal{O}(\log n)$ time.
- Therefore, $\mathcal{V}^{\infty}(S)$ can be constructed in $\mathcal{O}(n^2 \log n)$ time and $\mathcal{O}(n^2)$ space.

Algorithm

- Compute $\mathcal{R}(s_k)$.
- Compose $\mathcal{V}^{\infty}(S_k)$ from $\mathcal{R}(s_k)$ and $\mathcal{V}^{\infty}(S_{k-1})$.
 - Embed $\mathcal{R}(s_k)$ into $\mathcal{V}^{\infty}(S_{k-1})$.
 - Remove/shorten edges of $\mathcal{V}^{\infty}(S_{k-1})$ inside $\mathcal{R}(s_k)$

- Compute $\mathcal{R}(s_k)$ using a D&C approach in $\mathcal{O}(n \log n)$ time.
- Embed $\mathcal{R}(s_k)$ into $\mathcal{V}^{\infty}(S_{k-1})$ in $\mathcal{O}(n \log n)$ time.
- Overall we remove at most $\mathcal{O}(n^2)$ edges, where one removal takes $\mathcal{O}(\log n)$ time.
- Therefore, $\mathcal{V}^{\infty}(S)$ can be constructed in $\mathcal{O}(n^2 \log n)$ time and $\mathcal{O}(n^2)$ space.

Algorithm

- Compute $\mathcal{R}(s_k)$.
- Compose $\mathcal{V}^{\infty}(S_k)$ from $\mathcal{R}(s_k)$ and $\mathcal{V}^{\infty}(S_{k-1})$.
 - Embed $\mathcal{R}(s_k)$ into $\mathcal{V}^{\infty}(S_{k-1})$.
 - Remove/shorten edges of $\mathcal{V}^{\infty}(S_{k-1})$ inside $\mathcal{R}(s_k)$

- Compute $\mathcal{R}(s_k)$ using a D&C approach in $\mathcal{O}(n \log n)$ time.
- Embed $\mathcal{R}(s_k)$ into $\mathcal{V}^{\infty}(S_{k-1})$ in $\mathcal{O}(n \log n)$ time.
- Overall we remove at most $\mathcal{O}(n^2)$ edges, where one removal takes $\mathcal{O}(\log n)$ time.
- Therefore, $\mathcal{V}^{\infty}(S)$ can be constructed in $\mathcal{O}(n^2 \log n)$ time and $\mathcal{O}(n^2)$ space.

Algorithm

- Compute $\mathcal{R}(s_k)$.
- Compose $\mathcal{V}^{\infty}(S_k)$ from $\mathcal{R}(s_k)$ and $\mathcal{V}^{\infty}(S_{k-1})$.
 - Embed $\mathcal{R}(s_k)$ into $\mathcal{V}^{\infty}(S_{k-1})$.
 - Remove/shorten edges of $\mathcal{V}^{\infty}(S_{k-1})$ inside $\mathcal{R}(s_k)$

- Compute $\mathcal{R}(s_k)$ using a D&C approach in $\mathcal{O}(n \log n)$ time.
- Embed $\mathcal{R}(s_k)$ into $\mathcal{V}^{\infty}(S_{k-1})$ in $\mathcal{O}(n \log n)$ time.
- Overall we remove at most $\mathcal{O}(n^2)$ edges, where one removal takes $\mathcal{O}(\log n)$ time.
- Therefore, $\mathcal{V}^{\infty}(S)$ can be constructed in $\mathcal{O}(n^2 \log n)$ time and $\mathcal{O}(n^2)$ space.

Summary and Q & A

Summary

- Combinatorial complexity in the worst case $\Theta(n^2)$.
- Incremental construction in $\mathcal{O}(n^2 \log n)$ time and $\mathcal{O}(n^2)$ space.

References I

- F. Aurenhammer and H. Edelsbrunner. An Optimal Algorithm for Constructing the Weighted Voronoi Diagram in the Plane. *Pattern Recognition*, 17(2):251 – 257, 1984.
- [2] S. Fortune. A sweepline algorithm for voronoi diagrams. In *Proceedings of the Second Annual Symposium on Computational Geometry*, SCG '86, pages 313–322, New York, NY, USA, 1986. ACM.
- [3] E. Papadopoulou and D. Lee. The L_∞ Voronoi Diagram of Segments and VLSI Applications. International Journal of Computational Geometry, 11(05):503–528, 2001.