$_{\scriptscriptstyle m L}$ Weighted Voronoi Diagrams in the L_∞ -Norm

² Günther Eder and Martin Held¹

³ University of Salzburg, Austria

4 — Abstract

 $_{5}$ We study Voronoi diagrams of n weighted points in the plane in the maximum norm. We establish

- a tight $\Theta(n^2)$ worst-case combinatorial bound for such a Voronoi diagram and introduce an
- ⁷ incremental construction algorithm that allows its computation in $\mathcal{O}(n^2 \log n)$ time.
- ⁸ 2012 ACM Subject Classification Theory of computation \rightarrow Proof complexity
- ⁹ Keywords and phrases Weighted Voronoi Diagrams, Maximum Norm, Complexity, Algorithm
- ¹⁰ Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction and Definition

¹² In 1984 Aurenhammer and Edelsbrunner [?] introduced a worst-case optimal $\mathcal{O}(n^2)$ time ¹³ algorithm to compute the Voronoi diagram of *n* multiplicatively weighted point sites in the ¹⁴ L_2 metric. We investigate Voronoi diagrams of multiplicatively weighted point sites in the ¹⁵ L_{∞} metric. Contrary to the L_2 diagram, which consists of circular arcs, the L_{∞} diagram is ¹⁶ given by a PSGL. There is no obvious way to extend the linear-time half-space intersection ¹⁷ of [?], which relies on a spherical inversion, to our setting, i.e., to scaled unit cubes.

Let S denote a finite set of n weighted points, sites, in \mathbb{R}^2 and consider a weight function 18 $w: S \to \mathbb{R}^+$ assigning a weight w(s) to every site. For the sake of descriptional simplicity 19 we assume all weights of S to be unique. The weighted L_{∞} distance $d_w(p,s)$ between an 20 arbitrary point p in \mathbb{R}^2 and a site $s \in S$ is the standard L_{∞} distance d(p, s) between p and s 21 divided by the weight of s. For s_i in S, the (weighted) Voronoi region $\mathcal{R}(s_i)$ is the set of all 22 points of the plane that are closer to s_i than to any other site in S. The multiplicatively 23 weighted Voronoi Diagram $\mathcal{V}^{\infty}(S)$ is a subdivision of the plane whose faces are given by 24 (the connected components of) the Voronoi regions of all sites of S. The bisector of two 25 distinct sites s_i, s_j of S models the set of points that are at the same weighted distance from 26 s_i and s_j . Let $\Box_i(t)$ denote the boundary of an axis-aligned square centered at s_i with a 27 side length of $2 \cdot t \cdot w(s_i)$. Let $\mathcal{U}(t)$ be the set of all such n unit squares scaled by t and 28 corresponding weights. Let $\Box_i(t)$, $\Box_i(t)$ of $\mathcal{U}(t)$ and $w(s_i) < w(s_i)$. At time t > 0 these two 29 squares intersect the first time and at time $t' > t \Box_i(t)$ contains $\Box_i(t)$ for the first time. The 30 bisector of s_i, s_j is traced out along $\Box_j(t) \cap \Box_j(t)$ between the times t and t'. A degree-two 31 vertex, joint, in the bisector occurs whenever at least one vertex of one square crosses a side 32 of another square. Since this can happen at most once for every vertex-side pair, the bisector 33 of two sites forms a star-shaped polygon with a constant number of vertices. 34

³⁵ Clearly $\mathcal{V}^{\infty}(S)$ is formed by portions of bisectors. Thus $\mathcal{V}^{\infty}(S)$ consists of straight-line ³⁶ segments and forms a PSLG. It contains Voronoi joints as vertices of degree two, and Voronoi ³⁷ nodes as vertices of degree higher than two. Note that our distinct-weight assumption ³⁸ prevents $\mathcal{V}^{\infty}(S)$ from containing unbounded edges: Let s_i be the site of S with maximum ³⁹ weight. Then there exists a time t_i such that $\Box_i(t)$ contains all other squares of $\mathcal{U}(t)$ for all ⁴⁰ $t > t_i$. Thus, the Voronoi region of s_i is the only unbounded region.

© Günther Eder and Martin Held; licensed under Creative Commons License CC-BY 42nd Conference on Very Important Topics (CVIT 2016). Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:2 Leibniz International Proceedings in Informatics LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

¹ {geder, held}@cosy.sbg.ac.at; Work supported by Austrian Science Fund (FWF) Grant P25816-N15.

⁴¹ **2** Combinatorial Complexity of $\mathcal{V}^{\infty}(S)$ and Algorithm

⁴² Aurenhammer and Edelsbrunner [?] show that a multiplicatively weighted Voronoi diagram ⁴³ in the Euclidean metric has $\Theta(n^2)$ faces, edges, and nodes in the worst case. Their example ⁴⁴ that illustrates the quadratic worst-case lower bound can be adapted easily to our setting, ⁴⁵ hence establishing a quadratic lower bound for $\mathcal{V}^{\infty}(S)$ as well. Their proof of the quadratic ⁴⁶ upper bound proof is tightly connected to their setting and does not apply to $\mathcal{V}^{\infty}(S)$.

In the following we sketch how we establish a tight upper bound for $\mathcal{V}^{\infty}(S)$. The basic idea is that we raise $\mathcal{U}(t)$ to \mathbb{R}^3 by assigning a z-coordinate equal to t to every $\Box_i(t)$. Then $\mathcal{U}(t)$, for $0 \leq t \leq \infty$, forms n upside-down pyramids whose apices lie on the xy-plane and coincide with their respective site. The slope of such a pyramid depends on the weight: A larger weight corresponds to smaller slope. Let $\hat{\mathcal{U}}$ denote this pyramid arrangement. We can show that $\mathcal{V}^{\infty}(S)$ is the minimization diagram of $\hat{\mathcal{U}}$.

Now let the sites of S be (re-)numbered such that $w(s_i) > w(s_j)$ for $1 \le i < j \le n$, 53 and let $S_i := \{s_1, \ldots, s_i\}$. Hence, S_i contains all *i* sites of *S* with largest weights. We now 54 focus on the combinatorial complexity of $\mathcal{V}^{\infty}(S)$. Suppose that one constructs the Voronoi 55 region $\mathcal{R}(s_i)$ and merges it with $\mathcal{V}^{\infty}(S_{i-1})$ to obtain $\mathcal{V}^{\infty}(S_i)$. Similarly, in $\hat{\mathcal{U}}$ we can add 56 the respective pyramids incrementally such that $\hat{\mathcal{U}}_i$ is the arrangement of all pyramids for 57 S_i . We can show that the newly added pyramid P_i for s_i intersects at most a linear number 58 of edges of the lower envelope of $\hat{\mathcal{U}}_{i-1}$: Since the weight of s_i is smaller than the weights of 59 all sites of S_i , all pyramids of $\widehat{\mathcal{U}}_{i-1}$ have sides with slopes that are smaller than the slope of 60 the four sides of P_i . Now consider the supporting planes of the four sides of P_i . We look at 61 the intersection of \mathcal{U}_{i-1} and one such plane Π . We show that every pyramid of \mathcal{U}_{i-1} forms a 62 totally defined continuous function in this intersection and that any pair of these functions 63 has the same value at most twice. This property helps to establish a linear upper bound on 64 the combinatorial complexity of the lower envelope of $\Pi \cap \mathcal{U}_{i-1}$. Since all four such envelopes 65 imply an overall linear bound we can conclude that inserting the pyramid P_i into \mathcal{U}_{i-1} results 66 in a linear number of edges in $\mathcal{R}(s_i)$, thus establishing the quadratic upper bound for $\mathcal{V}^{\infty}(S)$. 67 Next we sketch our incremental construction algorithm. The first site inserted is s_1 and 68 initially $\mathcal{R}(s_1)$ is the xy-plane. In general, $\mathcal{R}(s_i)$ relative to S_i forms a star-shaped polygon 69 with s_i in its kernel: As stated above, the bisector of two sites s_i, s_j , where $w(s_i) < w(s_j)$, 70 forms a star-shaped polygon of constant combinatorial complexity around s_i . Hence, the 71 intersection of these i-1 polygons that model the bisectors between s_i and all sites of S_{i-1} is 72 again a star-shaped polygon with s_i in its kernel: It is $\mathcal{R}(s_i)$ relative to S_i . We can compute 73 such a star-shaped polygon in $\mathcal{O}(n \log n)$ time using a simple divide&conquer approach. As 74 established above, each such polygon is of at most linear size. Merging $\mathcal{V}^{\infty}(S_{i-1})$ with $\mathcal{R}(s_i)$ 75 takes $\mathcal{O}(n \log n)$ time when utilizing a search structure that is at most quadratic in size; 76 it holds the order of segments that lie on a common line. Finally we delete the edges of 77 $\mathcal{V}^{\infty}(S_{i-1})$ that lie strictly in the interior of $\mathcal{R}(s_i)$. Let k_i be the number of edges of $\mathcal{V}^{\infty}(S_{i-1})$ 78 strictly inside of $\mathcal{R}(s_i)$. Then $K := \sum_{0 \le i \le n} k_i \subseteq \mathcal{O}(n^2)$. This claim holds as K can be bounded by the number of edges created during the incremental construction, which in turn 79 80 is bounded by the combinatorial complexity of $\mathcal{V}^{\infty}(S_i)$ which is in $\Theta(i^2)$. 81

Theorem 2.1. An incremental construction allows to compute $\mathcal{V}^{\infty}(S)$ of a set S of nweighted sites in $\mathcal{O}(n^2 \log n)$ time and $\mathcal{O}(n^2)$ space.

References

⁸⁵ 1 F. Aurenhammer and H. Edelsbrunner. An Optimal Algorithm for Constructing the Weighted
 ⁸⁶ Voronoi Diagram in the Plane. *Pattern Recogn.*, 17(2):251 – 257, 1984.