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Abstract4

We study Voronoi diagrams of n weighted points in the plane in the maximum norm. We establish5

a tight Θ(n2) worst-case combinatorial bound for such a Voronoi diagram and introduce an6

incremental construction algorithm that allows its computation in O(n2 log n) time.7
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1 Introduction and Definition11

In 1984 Aurenhammer and Edelsbrunner [? ] introduced a worst-case optimal O(n2) time12

algorithm to compute the Voronoi diagram of n multiplicatively weighted point sites in the13

L2 metric. We investigate Voronoi diagrams of multiplicatively weighted point sites in the14

L∞ metric. Contrary to the L2 diagram, which consists of circular arcs, the L∞ diagram is15

given by a PSGL. There is no obvious way to extend the linear-time half-space intersection16

of [? ], which relies on a spherical inversion, to our setting, i.e., to scaled unit cubes.17

Let S denote a finite set of n weighted points, sites, in R2 and consider a weight function18

w : S → R+ assigning a weight w(s) to every site. For the sake of descriptional simplicity19

we assume all weights of S to be unique. The weighted L∞ distance dw(p, s) between an20

arbitrary point p in R2 and a site s ∈ S is the standard L∞ distance d(p, s) between p and s21

divided by the weight of s. For si in S, the (weighted) Voronoi region R(si) is the set of all22

points of the plane that are closer to si than to any other site in S. The multiplicatively23

weighted Voronoi Diagram V∞(S) is a subdivision of the plane whose faces are given by24

(the connected components of) the Voronoi regions of all sites of S. The bisector of two25

distinct sites si, sj of S models the set of points that are at the same weighted distance from26

si and sj . Let �i(t) denote the boundary of an axis-aligned square centered at si with a27

side length of 2 · t · w(si). Let U(t) be the set of all such n unit squares scaled by t and28

corresponding weights. Let �i(t), �j(t) of U(t) and w(si) < w(sj). At time t > 0 these two29

squares intersect the first time and at time t′ > t �j(t) contains �i(t) for the first time. The30

bisector of si, sj is traced out along �j(t) ∩�j(t) between the times t and t′. A degree-two31

vertex, joint, in the bisector occurs whenever at least one vertex of one square crosses a side32

of another square. Since this can happen at most once for every vertex-side pair, the bisector33

of two sites forms a star-shaped polygon with a constant number of vertices.34

Clearly V∞(S) is formed by portions of bisectors. Thus V∞(S) consists of straight-line35

segments and forms a PSLG. It contains Voronoi joints as vertices of degree two, and Voronoi36

nodes as vertices of degree higher than two. Note that our distinct-weight assumption37

prevents V∞(S) from containing unbounded edges: Let si be the site of S with maximum38

weight. Then there exists a time ti such that �i(t) contains all other squares of U(t) for all39

t > ti. Thus, the Voronoi region of si is the only unbounded region.40
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2 Combinatorial Complexity of V∞(S) and Algorithm41

Aurenhammer and Edelsbrunner [? ] show that a multiplicatively weighted Voronoi diagram42

in the Euclidean metric has Θ(n2) faces, edges, and nodes in the worst case. Their example43

that illustrates the quadratic worst-case lower bound can be adapted easily to our setting,44

hence establishing a quadratic lower bound for V∞(S) as well. Their proof of the quadratic45

upper bound proof is tightly connected to their setting and does not apply to V∞(S).46

In the following we sketch how we establish a tight upper bound for V∞(S). The basic47

idea is that we raise U(t) to R3 by assigning a z-coordinate equal to t to every �i(t). Then48

U(t), for 0 ≤ t ≤ ∞, forms n upside-down pyramids whose apices lie on the xy-plane and49

coincide with their respective site. The slope of such a pyramid depends on the weight: A50

larger weight corresponds to smaller slope. Let Û denote this pyramid arrangement. We can51

show that V∞(S) is the minimization diagram of Û .52

Now let the sites of S be (re-)numbered such that w(si) > w(sj) for 1 ≤ i < j ≤ n,53

and let Si := {s1, . . . , si}. Hence, Si contains all i sites of S with largest weights. We now54

focus on the combinatorial complexity of V∞(S). Suppose that one constructs the Voronoi55

region R(si) and merges it with V∞(Si−1) to obtain V∞(Si). Similarly, in Û we can add56

the respective pyramids incrementally such that Ûi is the arrangement of all pyramids for57

Si. We can show that the newly added pyramid Pi for si intersects at most a linear number58

of edges of the lower envelope of Ûi−1: Since the weight of si is smaller than the weights of59

all sites of Si, all pyramids of Ûi−1 have sides with slopes that are smaller than the slope of60

the four sides of Pi. Now consider the supporting planes of the four sides of Pi. We look at61

the intersection of Ûi−1 and one such plane Π. We show that every pyramid of Ûi−1 forms a62

totally defined continuous function in this intersection and that any pair of these functions63

has the same value at most twice. This property helps to establish a linear upper bound on64

the combinatorial complexity of the lower envelope of Π∩ Ûi−1. Since all four such envelopes65

imply an overall linear bound we can conclude that inserting the pyramid Pi into Ûi−1 results66

in a linear number of edges in R(si), thus establishing the quadratic upper bound for V∞(S).67

Next we sketch our incremental construction algorithm. The first site inserted is s1 and68

initially R(s1) is the xy-plane. In general, R(si) relative to Si forms a star-shaped polygon69

with si in its kernel: As stated above, the bisector of two sites si,sj , where w(si) < w(sj),70

forms a star-shaped polygon of constant combinatorial complexity around si. Hence, the71

intersection of these i−1 polygons that model the bisectors between si and all sites of Si−1 is72

again a star-shaped polygon with si in its kernel: It is R(si) relative to Si. We can compute73

such a star-shaped polygon in O(n log n) time using a simple divide&conquer approach. As74

established above, each such polygon is of at most linear size. Merging V∞(Si−1) with R(si)75

takes O(n log n) time when utilizing a search structure that is at most quadratic in size;76

it holds the order of segments that lie on a common line. Finally we delete the edges of77

V∞(Si−1) that lie strictly in the interior of R(si). Let ki be the number of edges of V∞(Si−1)78

strictly inside of R(si). Then K :=
∑

0<i≤n ki ⊆ O(n2). This claim holds as K can be79

bounded by the number of edges created during the incremental construction, which in turn80

is bounded by the combinatorial complexity of V∞(Si) which is in Θ(i2).81

I Theorem 2.1. An incremental construction allows to compute V∞(S) of a set S of n82

weighted sites in O(n2 log n) time and O(n2) space.83

References84

1 F. Aurenhammer and H. Edelsbrunner. An Optimal Algorithm for Constructing the Weighted85

Voronoi Diagram in the Plane. Pattern Recogn., 17(2):251 – 257, 1984.86


	Introduction and Definition
	Combinatorial Complexity of V(S) and Algorithm

