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We extend the work by Huber and Held (IJCGA 2012) on straight-skeleton computation 
based on motorcycle graphs to positively weighted skeletons. Resorting to a line arrange-
ment induced by the r reflex vertices of a simple n-vertex polygon P allows to compute 
the weighted straight skeleton of P in O(n2 + r3/k + nr log n) time and O(n + kr) space, for 
an arbitrary positive integer k ≤ r.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

We consider a simple planar polygon P (without holes) 
with n vertices and assume that strictly positive weights 
for the edges of P are given as part of the input. We em-
bed P into the xy-plane of R3. As usual, we call a vertex 
v reflex if the interior angle at v is greater than π , and 
convex otherwise. Suppose that r out of the n vertices of 
P are reflex.

Wavefront propagation is a well-known strategy for 
computing (weighted) straight skeletons [2,6,3]. The mov-
ing wavefront is defined over P and regarded as a func-
tion WP (t) of time t . At the start time t := 0 the wave-
front WP (0) equals P . As time progresses the propagation 
process simulates a shrinking of the wavefront. Therefore, 
every wavefront edge moves at unit speed and in a self-
parallel manner into the interior of the polygon while 
maintaining a closed boundary. The vertices of this shrink-
ing wavefront trace out arcs which form the straight skele-
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ton S(P ). To maintain the weak planarity1 of the wave-
front two event types have to be handled: edge events and 
split events. An edge event occurs when a wavefront edge 
shrinks to zero length. A split event occurs when a reflex 
wavefront vertex crashes into the interior of an opposing 
wavefront edge. These two types of events produce the 
(interior) nodes of the straight skeleton such that at least 
three arcs meet in a common node. (In addition there are 
n nodes that correspond to the vertices of P .) If multiple 
split events occur at the same point and time, i.e., if mul-
tiple reflex wavefront vertices coincide, then we call such 
an event a multi-split event. (Multi-split events are also 
known as vertex events [5].) Multiple edge events at the 
same point result in a vanishing wavefront component or 
multiple vanishing edges.

In the weighted scenario every edge requires an ad-
ditional parameter as the wavefront edges move with 
speeds given by edge weights of P rather than with unit 
speed. We denote by S(P , σ) the weighted straight skele-

1 A polygon is weakly planar (or weakly simple) if it is the boundary of 
a region that is topologically equivalent to a disk; (portions of) edges may 
overlap and vertices may coincide.
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ton of P and by WP (t, σ) the respective moving wavefront 
of P , where σ is the edge function that assigns a weight 
σ(e) > 0 to every edge e of P . The offset supporting line 
of the edge e at time t is given by e(t) := �(e) +ne ·σ(e) · t , 
where �(e) is the supporting line of e and ne is the inward 
unit normal vector of e. We let e(t) denote all straight-
line edges of e(t) that are part of WP (t, σ) at time t . We 
denote the location of a wavefront vertex v at time t by 
v(t). It is defined by the intersection ei(t) ∩ e j(t) of two 
offset supporting lines if an edge of both ei(t) and e j(t)
is incident at v(t). Special cases need to be considered if 
ei(t) and e j(t) are parallel: If both ei(t) and e j(t) have 
equal weights and move in the same direction then v(t)
is directed perpendicular to them and starts at the point 
where the wavefront edges become adjacent. If ei(t) and 
e j(t) have different weights and become collinear due to 
an event then the direction of v(t) is undefined. One feasi-
ble approach is to always pick the edge with lower weight. 
Thus, we terminate the edge which has higher weight by 
setting the angle of v(t) to 0 or π [3]. If ei(t) and e j(t)
move in opposite direction and an edge of both ei(t) and 
e j(t) meet then we get an edge event and v(t) is degen-
erate to an edge defined by the intersection of the parallel 
wavefront edges involved.

A reflex (convex) wavefront vertex traces out a reflex
(convex, resp.) arc of S(P , σ). Biedl et al. [3] show that 
many properties of unweighted straight skeletons are pre-
served for positively weighted straight skeletons of simple 
polygons. In particular S(P , σ) is connected, is a tree, has 
no crossings, and consists of n + v − 1 arcs, where v de-
notes the number of straight skeleton nodes. A roof R(P )

can be constructed over P in R3 by assigning a time de-
pending z-component to the propagating wavefront, and 
this roof remains a strictly z-monotone terrain even in the 
weighted case [3]. A property that does not transfer is 
the monotonicity of a face traced out by e(t) of WP (t, σ). 
However, it was shown by Biedl et al. [3] that every face 
always forms a simple polygon.

A motorcycle graph, introduced by Eppstein and Erick-
son [5], is a simulation of r motorcycles m1, . . . , mr that 
have given starting points and velocity vectors in R2. All 
motorcycles start at the same time, drive along straight 
lines at constant speed, and leave traces behind. Every mo-
torcycle stops whenever it crashes into the trace of another 
motorcycle. (Some motorcycles might escape to infinity, 
though.) The traces remain and form the line segments or 
rays of a graph: The motorcycle graph M(m1, . . . , mr) is 
defined as the arrangement of all traces after infinite time.

2. Related work and our contribution

Straight skeletons were introduced two decades ago by 
Aichholzer et al. [2]. The algorithm with the best worst-
case complexity is by Eppstein and Erickson [5]. Their algo-
rithm computes the weighted straight skeleton of a simple 
n-vertex polygon (with holes) in O(n8/5+ε) time and space. 
Their approach seems challenging to implement, though. 
More recent results with lower time/space-complexity are 
known [8,4]. Unfortunately they are not applicable in the 
weighted case.
Aichholzer and Aurenhammer [1] and Palfrader et 
al. [7] discuss a more practical algorithm. Their algorithm, 
based on a kinetic triangulation, computes the straight 
skeleton of a planar straight line graph (PSLG) in time 
O(n3 log n). The main idea is to maintain a triangulation 
of the interior of the wavefront over time. By analyz-
ing the triangles of this kinetic triangulation one can find 
the event points where the wavefront changes. The cubic 
worst-case time bound stems from the number of so-called 
flip events (when a reflex wavefront vertex crosses a diago-
nal of the triangulation).

Huber and Held [6] introduce an approach to compute 
the straight skeleton of a given PSLG in O(n2 log n) time 
and O(n) space. Flip events are avoided by utilizing the 
motorcycle graph induced by the input. We extend their 
work to positively weighted straight skeletons over simple 
polygons without holes. Our adaptation of their algorithm 
leads to an O(n2 + r3/k +nr log n) time and O(n +kr) space 
complexity, for an arbitrary positive integer k ≤ r. A space-
time tradeoff on k allows to scale the required space from 
linear to O(n + r2), thereby scaling the complexity term 
that depends on k between r2 and r3. These variants yield 
practical candidates for an implementation. In the sequel 
we review the algorithm by Huber and Held [6] and ex-
plain the modifications required to make their algorithm 
applicable for positive edge weights.

3. Algorithm

The best known upper bound for the triangulation-
based algorithm still is O(n3 log n). Huber and Held [6]
show a family of convex n-gons together with their tri-
angulations such that �(n2 log n) time is consumed, but 
no convex input is known that results in a running time 
worse than �(n2 log n). They also prove that for every sim-
ple polygon there exists a Steiner triangulation with O(n)

Steiner points that is free of flip events. In the weighted 
case additional Steiner points are needed since the faces 
of S(P , σ) do not have to be monotone. The total num-
ber of Steiner points needed is still in O(n) and it can be 
shown that Theorem 1 holds.

Theorem 1. Every simple polygon P with n vertices and positive 
edge weights admits a triangulation with O(n) Steiner points 
that is free of flip events during the wavefront propagation.

In the triangulation-based approach the flip events are 
caused by reflex vertices crashing into diagonals of the tri-
angulation. In [6] this is prevented by employing a Steiner 
triangulation. To apply this idea we resort to the motor-
cycle graph induced by P . A motorcycle m starts at every 
reflex vertex v of WP (0, σ). Its position at time t is de-
termined by v(t). Furthermore, the boundary of P is seen 
as a solid wall. Thus, a motorcycle not only crashes when 
reaching the trace of another motorcycle but also at the 
boundary of P . We denote the motorcycle graph of the un-
weighted P by M(P ), and the weighted motorcycle graph 
induced by a weighted P by M(P , σ).

The algorithm by Huber and Held [6] relies on two 
main properties of M(P ): (i) All reflex arcs of S(P ) have 
to be covered by segments of the motorcycle graph, and 
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Fig. 1. (a–b) A reflex-preserving edge event at v . (c–d) A multi-split event at v . Input is drawn in black (thick for higher edge weight), convex arcs in blue, 
and reflex arcs in orange. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. All edges of P have unit weight except those marked in thick (thin) black, which have large (small, resp.) edge weights; W∗
P (t, σ) is drawn in blue, 

the blue dashed edge marks a segment removed from A(P ) due to a reflex-preserving edge event. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)
(ii) M(P ) induces a convex tessellation of (the interior 
of) P . By adding additional motorcycles with different 
starting times, Huber and Held show that both (i) and (ii) 
hold for their induced (unweighted) motorcycle graph over 
any PSLG, even if multi-split events occur.

In the weighted approach, however, both properties 
(i) and (ii) are violated: Property (ii) does not hold be-
cause M(P , σ) need not induce a convex tessellation of P , 
cf. Fig. 1c. Furthermore, an edge event involving a reflex 
vertex may result in another reflex wavefront vertex v , cf. 
Fig. 1a. The arc traced out by v is not part of M(P , σ)

as v is not a reflex vertex of WP (0, σ), thus violating 
property (i). Updating M(P , σ) at times of such events 
is expensive, as redirecting one motorcycle may result 
in recomputing all other motorcycles. Since such reflex-
preserving edge events may occur after split events, cf. 
Fig. 1b, also tracking the initial convex arcs with additional 
motorcycles is insufficient. Clearly �(n) reflex-preserving 
edge events can occur. Hence, M(P , σ) seems unsuitable 
for covering all reflex arcs of S(P , σ).

3.1. Extended wavefront propagation

We take a different approach to track the reflex arcs 
of S(P , σ). Therefore we define the arrangement A(P ) in-
duced by the reflex vertices of WP (0, σ). For every reflex 
vertex v of WP (0, σ) a line segment is added to A(P )

such that it starts at v , lies on the ray defined by v(t), 
and ends at the point where this ray first meets a vertex 
or edge of P . The arrangement A(P ) consists of r such 
segments and covers all reflex arcs of the initial wavefront.

Lemma 2. A(P ) induces a convex tessellation of P .
Theorem 1 tells us that there always exists a flip-
event-free Steiner triangulation. Rather than attempting to 
compute straight skeletons based on Steiner triangulations 
we use the arrangement A(P ) to track the reflex arcs of 
S(P , σ). And instead of using a kinetic triangulation we 
employ an extended wavefront W∗

P to trace out S(P , σ)

without flip events:

Definition 1 (Huber and Held [6]). The extended wavefront 
W∗

P (t, σ) is given by the overlay of WP (t, σ) and A(P ) ∩⋃
t′≥t WP (t′, σ).

W∗
P (t, σ) is seen as a kinetic PSLG where the vertices 

which are not in WP (t, σ) are called Steiner vertices. Fur-
thermore, Steiner vertices that belong to both WP (t, σ)

and A(P ) are called moving Steiner vertices, while those 
Steiner vertices which have not yet been reached by the 
wavefront are called resting Steiner vertices, cf. Fig. 2.

For each segment s in A(P ) we store at most four 
vertices: v(t) of WP (t, σ), its moving Steiner vertex v(t′)
where s ends, and the two intersection points on s in 
A(P ) closest to v(t) and v(t′), if they exist, which are 
both resting Steiner vertices. Even if s initially does not 
intersect another segment of A(P ) then it is still needed 
as the arrangement can change. Due to multi-split and 
reflex-preserving edge events updates of A(P ) are required 
during the propagation of W∗

P (t, σ). An update consists 
of inserting and removing a segment from A(P ). First 
W∗

P (0, σ) is determined. Then for every edge its collapse 
time (if finite) is inserted as an event into a priority queue 
Q sorted by event time. As Q is sequentially dequeued the 
following events are distinguished, which are equivalent to 
the unweighted scenario:
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Edge event Two vertices u and v meet; the respective 
straight skeleton arcs are added; u and v are merged into 
a new vertex w . If w is reflex, i.e., resembles a reflex-
preserving edge event, then a new segment along w(t) is 
added to A(P ); the previous one is removed. Additionally 
it is checked whether u and v cause a whole triangle of 
the wavefront to vanish.

Split event If a reflex vertex u meets a moving Steiner 
vertex v then the reflex straight skeleton arc traced out 
by u is added. Consider the wavefront to the left of the 
edge e = uv . If this side collapsed then the corresponding 
straight skeleton arcs are added. Otherwise a new convex 
vertex emerges, which is connected to the vertices adja-
cent to u and v lying left to e. Similarly on the right side 
of e.

Switch event A convex vertex u meets a moving Steiner 
vertex or a reflex vertex v . Then u migrates from one con-
vex face to a neighboring one by jumping over v . If v
is reflex it becomes a moving Steiner vertex; respective 
straight skeleton arcs are added.

Multi-split event Reflex vertices u0, . . . , uk−1 meet simul-
taneously at a resting Steiner vertex u. We number them 
clockwise around u. First, reflex straight skeleton arcs are 
added for u0, . . . , uk−1 and their corresponding segments 
are removed from A(P ). Second, for all consecutive pairs 
ui, u(i+1) mod k , with 0 ≤ i < k: Let ei denote the edge uui

and let ei+1 denote the edge uu(i+1) mod k . Then the wave-
front is patched for each sector bound by ei and ei+1
as follows. (Note that if k = 0 then one sector spans the 
whole local disc.) A new vertex v is created which patches 
the next edge el of ei at ui in counter-clockwise direc-
tion (CCW) and the next edge er of ei+1 at u(i+1) mod k
in clockwise direction (CW) together. Also note that ad-
ditional edges e may have been incident to u between ei

and ei+1. Such an edge e could lie exactly on the trajectory 
of v , e.g., if v is a reflex wavefront vertex, because el and 
er span a reflex angle. In this case e, which was incident 
to u, simply becomes incident to v . Also we add a segment 
to A(P ) that lies on v(t). As v is reflex, the edge uv splits 
the non-convex sector into two sectors. If one of them is 
non-convex we add another segment to A(P ) that lies on 
either u1(t) or uk(t) and starts at u, such that the non-
convex sector is split into two convex sectors, cf. Figs. 1c 
and 1d. The next intersection point of these segments is 
added as resting Steiner vertex to W∗

P (t, σ) and the cor-
responding edges. In all other cases where v is convex, e
splits el resp. er by an additional moving Steiner vertex, 
depending on whether e lies left or right to the trajectory 
of v .

Start event A moving Steiner vertex u that moves on seg-
ment s of A(P ) meets a Steiner vertex v . This is similar 
to a multi-split event with k = 0, except that u is not a 
reflex vertex. Thus, no straight skeleton arc is traced out 
by u. The next intersection point v ′ on s is added as rest-
ing Steiner vertex to W∗

P (t, σ) as well as the edge v v ′ . We 
also shorten the segments of A(P ) incident at v where no 
moving Steiner vertex reached v: Their endpoint is modi-
fied to v and forms a moving Steiner vertex of W∗

P (t, σ).
When two moving Steiner vertices meet they can be 

removed. Other events are guaranteed not to occur. When 
Q is empty then also the last component of W∗

P (t, σ) has 
vanished and S(P , σ) is complete. The correctness of this 
approach follows immediately by observing that A(P ) is 
adapted during the extended wavefront propagation such 
that the following Lemma 3 holds. Lemma 4 follows from 
Lemmas 2 and 3.

Lemma 3. The movement of the reflex vertices of WP (t, σ) is 
tracked by A(P ) at any time t ≥ 0.

Lemma 4. For any t ≥ 0 the set P \ ⋃
t′∈[0,t] W∗

P (t, σ) consists 
of open convex faces.

3.2. Runtime analysis

The initial extended wavefront W∗
P (0, σ) and the ini-

tialization of Q can be done in O(n log n + nr) time. We 
have O(nr) switch events and O(r2) start events while 
all other events occur O(n) times. Handling one (reflex 
preserving) edge event takes O(n + r + r log n) time; in-
cluding updating A(P ) in O(r) time and adding/removing 
a segment of the wavefront in O(n) time. The latter may 
invalidate O(r) events in Q as the new segment can in-
tersect O(r) segments in A(P ) closer to WP (t, σ) than 
the current event points. Each requires a queue operation, 
i.e., O(log n) time. One start event takes O(r + log n) time, 
since O(r) time is needed to find the next intersection in 
A(P ) and O(log n) time to add the event to Q. Overall we 
need O(nr + n(n + r + r log n) + r2(r + log n)) time within 
linear space to compute S(P , σ). Since r ∈ O(n), this sim-
plifies to O(n2 + nr log n + r3) time.

Assume that we can afford O(n + kr) space, for a fixed 
k with 1 ≤ k ≤ r. Let s be a segment of A(P ) which we 
query for the next intersection point p. Instead of comput-
ing just p in O(r) time we compute and store the next k
intersection points in O(r log n) time. Note that this pre-
computed data can be invalidated by at most O(n) edge 
events. Since every segment has O(r) intersection points 
we have to compute the next k intersections only every 
O(r/k) times. This allows to deduce the following Theo-
rem 5.

Theorem 5. This algorithm computes the positively weighted 
straight skeleton of a simple n-vertex polygon with r reflex ver-
tices in O(n2 + r3/k + nr log n) time and O(n + kr) space.
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