
Computing Positively Weighted Straight Skeletons
of Simple Polygons

Using an Induced Line Arrangement

Günther Eder and Martin Held

University of Salzburg
FB Computerwissenschaften

5020 Salzburg, Austria

Alicante, June 2017



Related Work & Overview

Related Workr The straight skeleton was introduced by Aichholzer et al. 1995 [1].r Eppstein and Erickson [3] introduced in 1999 an algorithm with the current best
worst-case complexity: For a simple polygon (with holes) it requires O(n17/11+ε)
time and space to compute the (weighted) straight skeleton.r More resent results with lower time/space-complexity are known [2, 6]1 but only
for (unweighted) straight skeletons.

1Cheng, Mencel, and Vigneron as well as Vigneron and Yan.



Related Work & Overview

Related Workr The straight skeleton was introduced by Aichholzer et al. 1995 [1].r Eppstein and Erickson [3] introduced in 1999 an algorithm with the current best
worst-case complexity: For a simple polygon (with holes) it requires O(n17/11+ε)
time and space to compute the (weighted) straight skeleton.r More resent results with lower time/space-complexity are known [2, 6]1 but only
for (unweighted) straight skeletons.

1Cheng, Mencel, and Vigneron as well as Vigneron and Yan.



Related Work & Overview

Related Workr The straight skeleton was introduced by Aichholzer et al. 1995 [1].r Eppstein and Erickson [3] introduced in 1999 an algorithm with the current best
worst-case complexity: For a simple polygon (with holes) it requires O(n17/11+ε)
time and space to compute the (weighted) straight skeleton.r More resent results with lower time/space-complexity are known [2, 6]1 but only
for (unweighted) straight skeletons.

1Cheng, Mencel, and Vigneron as well as Vigneron and Yan.



Related Work & Overview

Related Workr The straight skeleton was introduced by Aichholzer et al. 1995 [1].r Eppstein and Erickson [3] introduced in 1999 an algorithm with the current best
worst-case complexity: For a simple polygon (with holes) it requires O(n17/11+ε)
time and space to compute the (weighted) straight skeleton.r More resent results with lower time/space-complexity are known [2, 6]1 but only
for (unweighted) straight skeletons.

Overviewr Our work is based on the work of Huber and Held (IJCGA 2012) on
straight-skeleton computation based on motorcycle graphs [4].r Using an extended wavefront they transform split events into edge events,
shifting the complexity to another event.r We revisit their work and show required changes to apply their approach to the
weighted scenario.

1Cheng, Mencel, and Vigneron as well as Vigneron and Yan.



Related Work & Overview

Related Workr The straight skeleton was introduced by Aichholzer et al. 1995 [1].r Eppstein and Erickson [3] introduced in 1999 an algorithm with the current best
worst-case complexity: For a simple polygon (with holes) it requires O(n17/11+ε)
time and space to compute the (weighted) straight skeleton.r More resent results with lower time/space-complexity are known [2, 6]1 but only
for (unweighted) straight skeletons.

Overviewr Our work is based on the work of Huber and Held (IJCGA 2012) on
straight-skeleton computation based on motorcycle graphs [4].r Using an extended wavefront they transform split events into edge events,
shifting the complexity to another event.r We revisit their work and show required changes to apply their approach to the
weighted scenario.

1Cheng, Mencel, and Vigneron as well as Vigneron and Yan.



Related Work & Overview

Related Workr The straight skeleton was introduced by Aichholzer et al. 1995 [1].r Eppstein and Erickson [3] introduced in 1999 an algorithm with the current best
worst-case complexity: For a simple polygon (with holes) it requires O(n17/11+ε)
time and space to compute the (weighted) straight skeleton.r More resent results with lower time/space-complexity are known [2, 6]1 but only
for (unweighted) straight skeletons.

Overviewr Our work is based on the work of Huber and Held (IJCGA 2012) on
straight-skeleton computation based on motorcycle graphs [4].r Using an extended wavefront they transform split events into edge events,
shifting the complexity to another event.r We revisit their work and show required changes to apply their approach to the
weighted scenario.

1Cheng, Mencel, and Vigneron as well as Vigneron and Yan.



Introductionr Introduced by Aichholzer et al. 1995 [1].r Consists only of straight line segments.r Defined by a propagation process:r Edges move inwards in a parallel manner at unit speed.r The vertices of the wavefront polygons trace out arcs.r Two events: edge event and split event

Image credit [5].



Introductionr Introduced by Aichholzer et al. 1995 [1].r Consists only of straight line segments.r Defined by a propagation process:r Edges move inwards in a parallel manner at unit speed.r The vertices of the wavefront polygons trace out arcs.r Two events: edge event and split event

Image credit [5].



Introductionr Introduced by Aichholzer et al. 1995 [1].r Consists only of straight line segments.r Defined by a propagation process:r Edges move inwards in a parallel manner at unit speed.r The vertices of the wavefront polygons trace out arcs.r Two events: edge event and split event

Image credit [5].



Introductionr Introduced by Aichholzer et al. 1995 [1].r Consists only of straight line segments.r Defined by a propagation process:r Edges move inwards in a parallel manner at unit speed.r The vertices of the wavefront polygons trace out arcs.r Two events: edge event and split event

Image credit [5].



Introductionr Introduced by Aichholzer et al. 1995 [1].r Consists only of straight line segments.r Defined by a propagation process:r Edges move inwards in a parallel manner at unit speed.r The vertices of the wavefront polygons trace out arcs.r Two events: edge event and split event

Image credit [5].



Introductionr Introduced by Aichholzer et al. 1995 [1].r Consists only of straight line segments.r Defined by a propagation process:r Edges move inwards in a parallel manner at unit speed.r The vertices of the wavefront polygons trace out arcs.r Two events: edge event and split event

Image credit [5].



Introductionr Introduced by Aichholzer et al. 1995 [1].r Consists only of straight line segments.r Defined by a propagation process:r Edges move inwards in a parallel manner at unit speed.r The vertices of the wavefront polygons trace out arcs.r Two events: edge eventr Two events: edge event and split event

Image credit [5].



Introductionr Introduced by Aichholzer et al. 1995 [1].r Consists only of straight line segments.r Defined by a propagation process:r Edges move inwards in a parallel manner at unit speed.r The vertices of the wavefront polygons trace out arcs.r Two events: edge event and split eventr Two events: edge event and split event

Image credit [5].



Introductionr Introduced by Aichholzer et al. 1995 [1].r Consists only of straight line segments.r Defined by a propagation process:r Edges move inwards in a parallel manner at unit speed.r The vertices of the wavefront polygons trace out arcs.r Two events: edge event and split event

Image credit [5].



Introductionr Introduced by Aichholzer et al. 1995 [1].r Consists only of straight line segments.r Defined by a propagation process:r Edges move inwards in a parallel manner at unit speed.r The vertices of the wavefront polygons trace out arcs.r Two events: edge event and split event

Image credit [5].



Introductionr Introduced by Aichholzer et al. 1995 [1].r Consists only of straight line segments.r Defined by a propagation process:r Edges move inwards in a parallel manner at unit speed.r The vertices of the wavefront polygons trace out arcs.r Two events: edge event and split eventr The straight skeleton consists of the blue arcs.

Image credit [5].



Straight Skeletons – Finding Events

v

e `(e)

Edge Eventsr Compute vanishing time for every edge if finite.r Enqueue all events in priority queue.r O(n log n) time and O(n) space.



Straight Skeletons – Finding Events

d(v , `(e))

v

e `(e)

Edge Eventsr Compute vanishing time for every edge if finite.r Enqueue all events in priority queue.r O(n log n) time and O(n) space.



Straight Skeletons – Finding Events

v

v ′ e

Edge Eventsr Compute vanishing time for every edge if finite.r Enqueue all events in priority queue.r O(n log n) time and O(n) space.

Split Eventsr Let v be a reflex vertex of P. Then there are
O(n) possible split events for v(t) in WP(t).r Enqueue event v ′ closest to v in O(n + log n) time.r If v ′ is not reached again O(n + log n) for v ′′.r We may miss O(n) times.r O(r(n2 + n log n)) time and O(n) space.



Straight Skeletons – Finding Events

v

v ′ e

Edge Eventsr Compute vanishing time for every edge if finite.r Enqueue all events in priority queue.r O(n log n) time and O(n) space.

Split Eventsr Let v be a reflex vertex of P. Then there are
O(n) possible split events for v(t) in WP(t).r Enqueue event v ′ closest to v in O(n + log n) time.r If v ′ is not reached again O(n + log n) for v ′′.r We may miss O(n) times.r O(r(n2 + n log n)) time and O(n) space.



Straight Skeletons – Finding Events

v

e

e′ v ′′

Edge Eventsr Compute vanishing time for every edge if finite.r Enqueue all events in priority queue.r O(n log n) time and O(n) space.

Split Eventsr Let v be a reflex vertex of P. Then there are
O(n) possible split events for v(t) in WP(t).r Enqueue event v ′ closest to v in O(n + log n) time.r If v ′ is not reached again O(n + log n) for v ′′.r We may miss O(n) times.r O(r(n2 + n log n)) time and O(n) space.



Straight Skeletons – Finding Events

v

e

e′ v ′′

Edge Eventsr Compute vanishing time for every edge if finite.r Enqueue all events in priority queue.r O(n log n) time and O(n) space.

Split Eventsr Let v be a reflex vertex of P. Then there are
O(n) possible split events for v(t) in WP(t).r Enqueue event v ′ closest to v in O(n + log n) time.r If v ′ is not reached again O(n + log n) for v ′′.r We may miss O(n) times.r O(r(n2 + n log n)) time and O(n) space.



Straight Skeletons – Finding Events

v

e

e′ v ′′

Edge Eventsr Compute vanishing time for every edge if finite.r Enqueue all events in priority queue.r O(n log n) time and O(n) space.

Split Eventsr Let v be a reflex vertex of P. Then there are
O(n) possible split events for v(t) in WP(t).r Enqueue event v ′ closest to v in O(n + log n) time.r If v ′ is not reached again O(n + log n) for v ′′.r We may miss O(n) times.r O(r(n2 + n log n)) time and O(n) space.

Multi-Split Eventr When two reflex wavefront vertices meet
at a common point2.

2Related to vertex event [3].



Tracing Reflex Arcs

edge event

r Every event, where a reflex wavefront vertex is involved, reduces the number of
reflex vertices in WP(t).r Can we know these reflex arcs in advance?



Tracing Reflex Arcs

edge event split event

r Every event, where a reflex wavefront vertex is involved, reduces the number of
reflex vertices in WP(t).r Can we know these reflex arcs in advance?



Tracing Reflex Arcs

edge event split event multi-split event1

r Every event, where a reflex wavefront vertex is involved, reduces the number of
reflex vertices in WP(t).r Can we know these reflex arcs in advance?

1 Also called vertex event [3].



Tracing Reflex Arcs

edge event split event multi-split event1

r Every event, where a reflex wavefront vertex is involved, reduces the number of
reflex vertices in WP(t).r Can we know these reflex arcs in advance?

1 Also called vertex event [3].



Motorcycle Graph and S(P)r Start a motorcycle m for every reflex vertex v of WP(t) such that m inherits the
velocity vector of v .r Every motorcycle leaves a trace behind and stops if it crashes into another trace
or the polygon boundary.r The motorcycle graph M(P)3 is formed when all motorcycles have crashed.

3Introduced by Eppstein and Erickson [3]



Motorcycle Graph and S(P)r Start a motorcycle m for every reflex vertex v of WP(t) such that m inherits the
velocity vector of v .r Every motorcycle leaves a trace behind and stops if it crashes into another trace
or the polygon boundary.r The motorcycle graph M(P)3 is formed when all motorcycles have crashed.

3Introduced by Eppstein and Erickson [3]



Motorcycle Graph and S(P)r Start a motorcycle m for every reflex vertex v of WP(t) such that m inherits the
velocity vector of v .r Every motorcycle leaves a trace behind and stops if it crashes into another trace
or the polygon boundary.r The motorcycle graph M(P)3 is formed when all motorcycles have crashed.

3Introduced by Eppstein and Erickson [3]



Motorcycle Graph and S(P)r Start a motorcycle m for every reflex vertex v of WP(t) such that m inherits the
velocity vector of v .r Every motorcycle leaves a trace behind and stops if it crashes into another trace
or the polygon boundary.r The motorcycle graph M(P)3 is formed when all motorcycles have crashed.

3Introduced by Eppstein and Erickson [3]



Motorcycle Graph and S(P)r Start a motorcycle m for every reflex vertex v of WP(t) such that m inherits the
velocity vector of v .r Every motorcycle leaves a trace behind and stops if it crashes into another trace
or the polygon boundary.r The motorcycle graph M(P)3 is formed when all motorcycles have crashed.

3Introduced by Eppstein and Erickson [3]



Motorcycle Graph and S(P)r Start a motorcycle m for every reflex vertex v of WP(t) such that m inherits the
velocity vector of v .r Every motorcycle leaves a trace behind and stops if it crashes into another trace
or the polygon boundary.r The motorcycle graph M(P)3 is formed when all motorcycles have crashed.

3Introduced by Eppstein and Erickson [3]



Motorcycle Graph and S(P) (cont’d)rM′(P) covers all reflex arcs of S(P)4.

4Various publications [2, 3]



Motorcycle Graph and S(P) (cont’d)rM′(P) covers all reflex arcs of S(P)4.

4Various publications [2, 3]



Motorcycle Graph and S(P) (cont’d)

?

rM′(P) covers “all” reflex arcs of S(P)4, such that no two motorcycles reach the
same point simultaneously.r Huber and Held [4] allow motorcycles to have different starting times and call it
generalized motorcycle graph M(P).

4Various publications [2, 3]



Motorcycle Graph and S(P) (cont’d)rM′(P) covers “all” reflex arcs of S(P)4, such that no two motorcycles reach the
same point simultaneously.r Huber and Held [4] allow motorcycles to have different starting times and call it
generalized motorcycle graph M(P).

4Various publications [2, 3]



Motorcycle Graph and S(P) (cont’d)rM′(P) covers “all” reflex arcs of S(P)4, such that no two motorcycles reach the
same point simultaneously.r Huber and Held [4] allow motorcycles to have different starting times and call it
generalized motorcycle graph M(P).

4Various publications [2, 3]



Extended Wavefront W∗Pr Huber and Held introduce the extended wavefront W∗P(t).rW∗P(t) consists of the wavefront at time t and the portion of M(P) that lies
inside that wavefront.r All regions in W∗P(t) are convex and all events are edge events.



Extended Wavefront W∗Pr Huber and Held introduce the extended wavefront W∗P(t).rW∗P(t) consists of the wavefront at time t and the portion of M(P) that lies
inside that wavefront.r All regions in W∗P(t) are convex and all events are edge events.



Extended Wavefront W∗Pr Huber and Held introduce the extended wavefront W∗P(t).rW∗P(t) consists of the wavefront at time t and the portion of M(P) that lies
inside that wavefront.r All regions in W∗P(t) are convex and all events are edge events.



Extended Wavefront W∗P

moving Steiner point

resting Steiner point

r Huber and Held introduce the extended wavefront W∗P(t).rW∗P(t) consists of the wavefront at time t and the portion of M(P) that lies
inside that wavefront.r All regions in W∗P(t) are convex and all events are edge events.



Extended Wavefront W∗P

split event

r Huber and Held introduce the extended wavefront W∗P(t).rW∗P(t) consists of the wavefront at time t and the portion of M(P) that lies
inside that wavefront.r All regions in W∗P(t) are convex and all events are edge events.



Extended Wavefront W∗P

multi-split event

r Huber and Held introduce the extended wavefront W∗P(t).rW∗P(t) consists of the wavefront at time t and the portion of M(P) that lies
inside that wavefront.r All regions in W∗P(t) are convex and all events are edge events.



Extended Wavefront W∗Pr Huber and Held introduce the extended wavefront W∗P(t).rW∗P(t) consists of the wavefront at time t and the portion of M(P) that lies
inside that wavefront.r All regions in W∗P(t) are convex and all events are edge events.



Extended Wavefront W∗Pr Huber and Held introduce the extended wavefront W∗P(t).rW∗P(t) consists of the wavefront at time t and the portion of M(P) that lies
inside that wavefront.r All regions in W∗P(t) are convex and all events are edge events.



Extended Wavefront W∗P (cont’d)

moving Steiner point

r Using W∗P(t) one can compute S(P) in O((n + nr) log n) time and linear space.r The number of switch events, i.e., when a wavefront vertex meets a moving
Steiner point (where the arc of a motorcycle edge ends) is in O(nr).



Extended Wavefront W∗P (cont’d)

moving Steiner point

r Using W∗P(t) one can compute S(P) in O((n + nr) log n) time and linear space.r The number of switch events, i.e., when a wavefront vertex meets a moving
Steiner point (where the arc of a motorcycle edge ends) is in O(nr).



Extended Wavefront W∗P (cont’d)r Using W∗P(t) one can compute S(P) in O((n + nr) log n) time and linear space.r The number of switch events, i.e., when a wavefront vertex meets a moving
Steiner point (where the arc of a motorcycle edge ends) is in O(nr).



Extended Wavefront W∗P (cont’d)r Using W∗P(t) one can compute S(P) in O((n + nr) log n) time and linear space.r The number of switch events, i.e., when a wavefront vertex meets a moving
Steiner point (where the arc of a motorcycle edge ends) is in O(nr).



Extended Wavefront W∗P (cont’d)r Using W∗P(t) one can compute S(P) in O((n + nr) log n) time and linear space.r The number of switch events, i.e., when a wavefront vertex meets a moving
Steiner point (where the arc of a motorcycle edge ends) is in O(nr).



Weighted Straight Skeleton S(P, σ)r Wavefront WP(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the
weight function σ ∈ R+ provides the strictly positive edge weights.r Thick edges have σ of about 3, unit weight otherwise.r S(P) (left) and S(P, σ) (right).



Weighted Straight Skeleton S(P, σ)r Wavefront WP(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the
weight function σ ∈ R+ provides the strictly positive edge weights.r Thick edges have σ of about 3, unit weight otherwise.r S(P) (left) and S(P, σ) (right).



Weighted Straight Skeleton S(P, σ)r Wavefront WP(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the
weight function σ ∈ R+ provides the strictly positive edge weights.r Thick edges have σ of about 3, unit weight otherwise.r S(P) (left) and S(P, σ) (right).



Weighted Straight Skeleton S(P, σ)r Wavefront WP(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the
weight function σ ∈ R+ provides the strictly positive edge weights.r Thick edges have σ of about 3, unit weight otherwise.r S(P) (left) and S(P, σ) (right).



Weighted Straight Skeleton S(P, σ)r Wavefront WP(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the
weight function σ ∈ R+ provides the strictly positive edge weights.r Thick edges have σ of about 3, unit weight otherwise.r S(P) (left) and S(P, σ) (right).



Weighted Straight Skeleton S(P, σ)r Wavefront WP(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the
weight function σ ∈ R+ provides the strictly positive edge weights.r Thick edges have σ of about 3, unit weight otherwise.r S(P) (left) and S(P, σ) (right).



Weighted Straight Skeleton S(P, σ)r Wavefront WP(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the
weight function σ ∈ R+ provides the strictly positive edge weights.r Thick edges have σ of about 3, unit weight otherwise.r S(P) (left) and S(P, σ) (right).



Weighted Straight Skeleton S(P, σ)r Wavefront WP(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the
weight function σ ∈ R+ provides the strictly positive edge weights.r Thick edges have σ of about 3, unit weight otherwise.r S(P) (left) and S(P, σ) (right).



Weighted Straight Skeleton S(P, σ)r Wavefront WP(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the
weight function σ ∈ R+ provides the strictly positive edge weights.r Thick edges have σ of about 3, unit weight otherwise.r S(P) (left) and S(P, σ) (right).



Weighted Straight Skeleton S(P, σ)r Wavefront WP(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the
weight function σ ∈ R+ provides the strictly positive edge weights.r Thick edges have σ of about 3, unit weight otherwise.r S(P) (left) and S(P, σ) (right).



Weighted Straight Skeleton (cont’d)

v > π

mutli-split event

r Reflex vertices of W(P, σ) are not limited by first event.rM(P) covers only initial reflex arcs of S(P, σ).rM(P) may have to be updated n times.r Updating M(P) results in re-computation.



Weighted Straight Skeleton (cont’d)

v > π

mutli-split event

v

edge event

r Reflex vertices of W(P, σ) are not limited by first event.rM(P) covers only initial reflex arcs of S(P, σ).rM(P) may have to be updated n times.r Updating M(P) results in re-computation.



Weighted Straight Skeleton (cont’d)

v > π

mutli-split event

v

edge event

v

edge event1

r Reflex vertices of W(P, σ) are not limited by first event.rM(P) covers only initial reflex arcs of S(P, σ).rM(P) may have to be updated n times.r Updating M(P) results in re-computation.

1 after a split event.



Weighted Straight Skeleton (cont’d)

v > π

mutli-split event

v

edge event

v

edge event1

r Reflex vertices of W(P, σ) are not limited by first event.rM(P) covers only initial reflex arcs of S(P, σ).rM(P) may have to be updated n times.r Updating M(P) results in re-computation.

1 after a split event.



Weighted Straight Skeleton (cont’d)

v > π

mutli-split event

v

edge event

v

edge event1

r Reflex vertices of W(P, σ) are not limited by first event.rM(P) covers only initial reflex arcs of S(P, σ).rM(P) may have to be updated n times.r Updating M(P) results in re-computation.

1 after a split event.



Induced Line Arrangement A(P)r For every reflex vertex v of P we construct a line segment s.r Let s start at v , lie on v(t) of WP(t, σ), and end at the first intersection with the
boundary of P.r The set of all such line segments forms A(P).



Induced Line Arrangement A(P)r For every reflex vertex v of P we construct a line segment s.r Let s start at v , lie on v(t) of WP(t, σ), and end at the first intersection with the
boundary of P.r The set of all such line segments forms A(P).



Induced Line Arrangement A(P)r For every reflex vertex v of P we construct a line segment s.r Let s start at v , lie on v(t) of WP(t, σ), and end at the first intersection with the
boundary of P.r The set of all such line segments forms A(P).



Induced Line Arrangement A(P)r For every reflex vertex v of P we construct a line segment s.r Let s start at v , lie on v(t) of WP(t, σ), and end at the first intersection with the
boundary of P.r The set of all such line segments forms A(P).

Linear or Quadratic Spacer Store all O(r2) intersections in a sorted manner: O(r2 log r) time and O(r2)
space. Obtain the next intersection in O(1) time.r Store only the closest intersection to a point for all segments in A(P), i.e., overall
O(r) intersections. Obtain the next intersection in O(r) time.



Induced Line Arrangement A(P)r For every reflex vertex v of P we construct a line segment s.r Let s start at v , lie on v(t) of WP(t, σ), and end at the first intersection with the
boundary of P.r The set of all such line segments forms A(P).

Linear or Quadratic Spacer Store all O(r2) intersections in a sorted manner: O(r2 log r) time and O(r2)
space. Obtain the next intersection in O(1) time.r Store only the closest intersection to a point for all segments in A(P), i.e., overall
O(r) intersections. Obtain the next intersection in O(r) time.



Induced Line Arrangement A(P)r For every reflex vertex v of P we construct a line segment s.r Let s start at v , lie on v(t) of WP(t, σ), and end at the first intersection with the
boundary of P.r The set of all such line segments forms A(P).

Linear or Quadratic Spacer Store all O(r2) intersections in a sorted manner: O(r2 log r) time and O(r2)
space. Obtain the next intersection in O(1) time.r Store only the closest intersection to a point for all segments in A(P), i.e., overall
O(r) intersections. Obtain the next intersection in O(r) time.

Space Time Trade-offr For a fixed k in 1 ≤ k ≤ r . Let s a segement in A(P).r We compute and store the next k intersections on s in O(r log r) time.r On s are at most r intersections points, thus we have to compute the next k
intersections at most r/k times.r We require O(kr) space for A(P).



Induced Line Arrangement A(P)r For every reflex vertex v of P we construct a line segment s.r Let s start at v , lie on v(t) of WP(t, σ), and end at the first intersection with the
boundary of P.r The set of all such line segments forms A(P).

Linear or Quadratic Spacer Store all O(r2) intersections in a sorted manner: O(r2 log r) time and O(r2)
space. Obtain the next intersection in O(1) time.r Store only the closest intersection to a point for all segments in A(P), i.e., overall
O(r) intersections. Obtain the next intersection in O(r) time.

Space Time Trade-offr For a fixed k in 1 ≤ k ≤ r . Let s a segement in A(P).r We compute and store the next k intersections on s in O(r log r) time.r On s are at most r intersections points, thus we have to compute the next k
intersections at most r/k times.r We require O(kr) space for A(P).



Induced Line Arrangement A(P)r For every reflex vertex v of P we construct a line segment s.r Let s start at v , lie on v(t) of WP(t, σ), and end at the first intersection with the
boundary of P.r The set of all such line segments forms A(P).

Linear or Quadratic Spacer Store all O(r2) intersections in a sorted manner: O(r2 log r) time and O(r2)
space. Obtain the next intersection in O(1) time.r Store only the closest intersection to a point for all segments in A(P), i.e., overall
O(r) intersections. Obtain the next intersection in O(r) time.

Space Time Trade-offr For a fixed k in 1 ≤ k ≤ r . Let s a segement in A(P).r We compute and store the next k intersections on s in O(r log r) time.r On s are at most r intersections points, thus we have to compute the next k
intersections at most r/k times.r We require O(kr) space for A(P).



Induced Line Arrangement A(P)r For every reflex vertex v of P we construct a line segment s.r Let s start at v , lie on v(t) of WP(t, σ), and end at the first intersection with the
boundary of P.r The set of all such line segments forms A(P).

Linear or Quadratic Spacer Store all O(r2) intersections in a sorted manner: O(r2 log r) time and O(r2)
space. Obtain the next intersection in O(1) time.r Store only the closest intersection to a point for all segments in A(P), i.e., overall
O(r) intersections. Obtain the next intersection in O(r) time.

Space Time Trade-offr For a fixed k in 1 ≤ k ≤ r . Let s a segement in A(P).r We compute and store the next k intersections on s in O(r log r) time.r On s are at most r intersections points, thus we have to compute the next k
intersections at most r/k times.r We require O(kr) space for A(P).



Extended Wavefront W∗P(t, σ)



Extended Wavefront W∗P(t, σ)



Extended Wavefront W∗P(t, σ)



Extended Wavefront W∗P(t, σ)



Extended Wavefront W∗P(t, σ)



Extended Wavefront W∗P(t, σ)

new resting Steiner point

start events

switch event



Extended Wavefront W∗P(t, σ)

reflex preserving edge event



Extended Wavefront W∗P(t, σ)

updating A(P)



Extended Wavefront W∗P(t, σ)

multi-split event



Extended Wavefront W∗P(t, σ)

updating A(P)



Extended Wavefront W∗P(t, σ)



Extended Wavefront W∗P(t, σ)



Extended Wavefront W∗P(t, σ)



Complexity Analysis

P consists of n vertices, r of which are reflex. The propagation of W∗P(t, σ) results in:r O(n) split/edge events,r O(nr) switch events, andr O(r2) start events.



Complexity Analysis

P consists of n vertices, r of which are reflex. The propagation of W∗P(t, σ) results in:r O(n) split/edge events,r O(nr) switch events, andr O(r2) start events.



Complexity Analysis

P consists of n vertices, r of which are reflex. The propagation of W∗P(t, σ) results in:r O(n) split/edge events,r O(nr) switch events, andr O(r2) start events.



Complexity Analysis

P consists of n vertices, r of which are reflex. The propagation of W∗P(t, σ) results in:r O(n) split/edge events,r O(nr) switch events, andr O(r2) start events.



Complexity Analysis

P consists of n vertices, r of which are reflex. The propagation of W∗P(t, σ) results in:r O(n) split/edge events,r O(nr) switch events, andr O(r2) start events.

r Computing W∗P(t, σ) at t = 0 takes O(n log n + nr) time.r Handling one (reflex preserving) edge event takes O(n + r + r log n) time:r Updating A(P): O(r) time.r Adding/removing a segment of the wavefront: O(n) time.r The new segment in A(P) may invalidate O(r) events in Q: O(r log n).r Handling one start event takes O(r + log n) time:r O(r) time to find the next intersection in A(P).r O(log n) time to add the event to Q.



Complexity Analysis

P consists of n vertices, r of which are reflex. The propagation of W∗P(t, σ) results in:r O(n) split/edge events,r O(nr) switch events, andr O(r2) start events.

r Computing W∗P(t, σ) at t = 0 takes O(n log n + nr) time.r Handling one (reflex preserving) edge event takes O(n + r + r log n) time:r Updating A(P): O(r) time.r Adding/removing a segment of the wavefront: O(n) time.r The new segment in A(P) may invalidate O(r) events in Q: O(r log n).r Handling one start event takes O(r + log n) time:r O(r) time to find the next intersection in A(P).r O(log n) time to add the event to Q.



Complexity Analysis

P consists of n vertices, r of which are reflex. The propagation of W∗P(t, σ) results in:r O(n) split/edge events,r O(nr) switch events, andr O(r2) start events.

r Computing W∗P(t, σ) at t = 0 takes O(n log n + nr) time.r Handling one (reflex preserving) edge event takes O(n + r + r log n) time:r Updating A(P): O(r) time.r Adding/removing a segment of the wavefront: O(n) time.r The new segment in A(P) may invalidate O(r) events in Q: O(r log n).r Handling one start event takes O(r + log n) time:r O(r) time to find the next intersection in A(P).r O(log n) time to add the event to Q.



Complexity Analysis

P consists of n vertices, r of which are reflex. The propagation of W∗P(t, σ) results in:r O(n) split/edge events,r O(nr) switch events, andr O(r2) start events.

r Computing W∗P(t, σ) at t = 0 takes O(n log n + nr) time.r Handling one (reflex preserving) edge event takes O(n + r + r log n) time:r Updating A(P): O(r) time.r Adding/removing a segment of the wavefront: O(n) time.r The new segment in A(P) may invalidate O(r) events in Q: O(r log n).r Handling one start event takes O(r + log n) time:r O(r) time to find the next intersection in A(P).r O(log n) time to add the event to Q.



Complexity Analysis

P consists of n vertices, r of which are reflex. The propagation of W∗P(t, σ) results in:r O(n) split/edge events,r O(nr) switch events, andr O(r2) start events.

r Computing W∗P(t, σ) at t = 0 takes O(n log n + nr) time.r Handling one (reflex preserving) edge event takes O(n + r + r log n) time:r Updating A(P): O(r) time.r Adding/removing a segment of the wavefront: O(n) time.r The new segment in A(P) may invalidate O(r) events in Q: O(r log n).r Handling one start event takes O(r + log n) time:r O(r) time to find the next intersection in A(P).r O(log n) time to add the event to Q.



Complexity Analysis

P consists of n vertices, r of which are reflex. The propagation of W∗P(t, σ) results in:r O(n) split/edge events,r O(nr) switch events, andr O(r2) start events.

r Computing W∗P(t, σ) at t = 0 takes O(n log n + nr) time.r Handling one (reflex preserving) edge event takes O(n + r + r log n) time:r Updating A(P): O(r) time.r Adding/removing a segment of the wavefront: O(n) time.r The new segment in A(P) may invalidate O(r) events in Q: O(r log n).r Handling one start event takes O(r + log n) time:r O(r) time to find the next intersection in A(P).r O(log n) time to add the event to Q.



Complexity Analysis

P consists of n vertices, r of which are reflex. The propagation of W∗P(t, σ) results in:r O(n) split/edge events,r O(nr) switch events, andr O(r2) start events.

r Computing W∗P(t, σ) at t = 0 takes O(n log n + nr) time.r Handling one (reflex preserving) edge event takes O(n + r + r log n) time:r Updating A(P): O(r) time.r Adding/removing a segment of the wavefront: O(n) time.r The new segment in A(P) may invalidate O(r) events in Q: O(r log n).r Handling one start event takes O(r + log n) time:r O(r) time to find the next intersection in A(P).r O(log n) time to add the event to Q.



Complexity Analysis

P consists of n vertices, r of which are reflex. The propagation of W∗P(t, σ) results in:r O(n) split/edge events,r O(nr) switch events, andr O(r2) start events.

r Computing W∗P(t, σ) at t = 0 takes O(n log n + nr) time.r Handling one (reflex preserving) edge event takes O(n + r + r log n) time:r Updating A(P): O(r) time.r Adding/removing a segment of the wavefront: O(n) time.r The new segment in A(P) may invalidate O(r) events in Q: O(r log n).r Handling one start event takes O(r + log n) time:r O(r) time to find the next intersection in A(P).r O(log n) time to add the event to Q.



Complexity Analysis

P consists of n vertices, r of which are reflex. The propagation of W∗P(t, σ) results in:r O(n) split/edge events,r O(nr) switch events, andr O(r2) start events.

r Computing W∗P(t, σ) at t = 0 takes O(n log n + nr) time.r Handling one (reflex preserving) edge event takes O(n + r + r log n) time:r Updating A(P): O(r) time.r Adding/removing a segment of the wavefront: O(n) time.r The new segment in A(P) may invalidate O(r) events in Q: O(r log n).r Handling one start event takes O(r + log n) time:r O(r) time to find the next intersection in A(P).r O(log n) time to add the event to Q.

Overall Complexity

time space
classical O(n2 + r3 + nr log n) O(n)



Complexity Analysis

P consists of n vertices, r of which are reflex. The propagation of W∗P(t, σ) results in:r O(n) split/edge events,r O(nr) switch events, andr O(r2) start events.

r Computing W∗P(t, σ) at t = 0 takes O(n log n + nr) time.r Handling one (reflex preserving) edge event takes O(n + r + r log n) time:r Updating A(P): O(r) time.r Adding/removing a segment of the wavefront: O(n) time.r The new segment in A(P) may invalidate O(r) events in Q: O(r log n).r Handling one start event takes O(r + log n) time:r O(r) time to find the next intersection in A(P).r O(log n) time to add the event to Q.

Overall Complexity

time space
classical O(n2 + r3 + nr log n) O(n)
trade-off 5 O(n2 + r3/k + nr log n) O(n + kr)

5with a fixed k s.t. 1 ≤ k ≤ r .



Q & A

Questions?



References I

[1] O. Aichholzer, F. Aurenhammer, D. Alberts, and B. Gärtner. A Novel Type of Skeleton for
Polygons. Journal of Universal Computer Science, 1(12):752–761, 1995.

[2] S.-W. Cheng, L. Mencel, and A. Vigneron. A Faster Algorithm for Computing Straight
Skeletons. 12(3):44:1–44:21, Apr. 2016.

[3] D. Eppstein and J. Erickson. Raising Roofs, Crashing Cycles, and Playing Pool: Applications
of a Data Structure for Finding Pairwise Interactions. Discrete & Computational Geometry,
22(4):569–592, 1999.

[4] S. Huber and M. Held. A Fast Straight-Skeleton Algorithm Based on Generalized Motorcycle
Graphs. International Journal of Computational Geometry, 22(5):471–498, 2012.

[5] P. Palfrader. Phd Defense.

[6] A. Vigneron and L. Yan. A Faster Algorithm for Computing Motorcycle Graphs. Discrete &
Computational Geometry, 52(3):492–514, Oct. 2014.


	AMA
	References

