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Introductionr Introduced by Aichholzer et al. 1995 [1].r Consists only of straight line segments.r Defined by a propagation process:r Edges move inwards in a parallel manner at unit speed.r The vertices of the wavefront polygons trace out arcs.r Two events: edge event and split eventr The straight skeleton consists of the blue arcs.

Image credit [5].
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Multi-Split Eventr When two reflex wavefront vertices meet
at a common point2.

2Related to vertex event [3].
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space. Obtain the next intersection in O(1) time.r Store only the closest intersection to a point for all segments in A(P), i.e., overall
O(r) intersections. Obtain the next intersection in O(r) time.

Space Time Trade-offr For a fixed k in 1 ≤ k ≤ r . Let s a segement in A(P).r We compute and store the next k intersections on s in O(r log r) time.r On s are at most r intersections points, thus we have to compute the next k
intersections at most r/k times.r We require O(kr) space for A(P).
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P consists of n vertices, r of which are reflex. The propagation of W∗P(t, σ) results in:r O(n) split/edge events,r O(nr) switch events, andr O(r2) start events.

r Computing W∗P(t, σ) at t = 0 takes O(n log n + nr) time.r Handling one (reflex preserving) edge event takes O(n + r + r log n) time:r Updating A(P): O(r) time.r Adding/removing a segment of the wavefront: O(n) time.r The new segment in A(P) may invalidate O(r) events in Q: O(r log n).r Handling one start event takes O(r + log n) time:r O(r) time to find the next intersection in A(P).r O(log n) time to add the event to Q.

Overall Complexity

time space
classical O(n2 + r3 + nr log n) O(n)
trade-off 5 O(n2 + r3/k + nr log n) O(n + kr)

5with a fixed k s.t. 1 ≤ k ≤ r .



Q & A

Questions?



References I

[1] O. Aichholzer, F. Aurenhammer, D. Alberts, and B. Gärtner. A Novel Type of Skeleton for
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