Computing Positively Weighted Straight Skeletons of Simple Polygons Using an Induced Line Arrangement

Günther Eder and Martin Held

University of Salzburg FB Computerwissenschaften 5020 Salzburg, Austria

Alicante, June 2017

Related Work

- The straight skeleton was introduced by Aichholzer et al. 1995 [1].
- Eppstein and Erickson [3] introduced in 1999 an algorithm with the current best worst-case complexity: For a simple polygon (with holes) it requires $\mathcal{O}(n^{17/11+\varepsilon})$ time and space to compute the (weighted) straight skeleton.
- More resent results with lower time/space-complexity are known [2, 6]¹ but only for (unweighted) straight skeletons.

Related Work

- The straight skeleton was introduced by Aichholzer et al. 1995 [1].
- Eppstein and Erickson [3] introduced in 1999 an algorithm with the current best worst-case complexity: For a simple polygon (with holes) it requires $\mathcal{O}(n^{17/11+\varepsilon})$ time and space to compute the (weighted) straight skeleton.
- More resent results with lower time/space-complexity are known [2, 6]¹ but only for (unweighted) straight skeletons.

Related Work

- The straight skeleton was introduced by Aichholzer et al. 1995 [1].
- Eppstein and Erickson [3] introduced in 1999 an algorithm with the current best worst-case complexity: For a simple polygon (with holes) it requires $\mathcal{O}(n^{17/11+\varepsilon})$ time and space to compute the (weighted) straight skeleton.
- More resent results with lower time/space-complexity are known [2, 6]¹ but only for (unweighted) straight skeletons.

¹Cheng, Mencel, and Vigneron as well as Vigneron and Yan.

Related Work

- The straight skeleton was introduced by Aichholzer et al. 1995 [1].
- Eppstein and Erickson [3] introduced in 1999 an algorithm with the current best worst-case complexity: For a simple polygon (with holes) it requires $\mathcal{O}(n^{17/11+\varepsilon})$ time and space to compute the (weighted) straight skeleton.
- More resent results with lower time/space-complexity are known [2, 6]¹ but only for (unweighted) straight skeletons.

Overview

- Our work is based on the work of Huber and Held (IJCGA 2012) on straight-skeleton computation based on motorcycle graphs [4].
- Using an *extended wavefront* they transform split events into edge events, shifting the complexity to another event.
- We revisit their work and show required changes to apply their approach to the weighted scenario.

¹Cheng, Mencel, and Vigneron as well as Vigneron and Yan.

Related Work

- The straight skeleton was introduced by Aichholzer et al. 1995 [1].
- Eppstein and Erickson [3] introduced in 1999 an algorithm with the current best worst-case complexity: For a simple polygon (with holes) it requires $\mathcal{O}(n^{17/11+\varepsilon})$ time and space to compute the (weighted) straight skeleton.
- More resent results with lower time/space-complexity are known [2, 6]¹ but only for (unweighted) straight skeletons.

Overview

- Our work is based on the work of Huber and Held (IJCGA 2012) on straight-skeleton computation based on motorcycle graphs [4].
- Using an *extended wavefront* they transform split events into edge events, shifting the complexity to another event.
- We revisit their work and show required changes to apply their approach to the weighted scenario.

¹Cheng, Mencel, and Vigneron as well as Vigneron and Yan.

Related Work

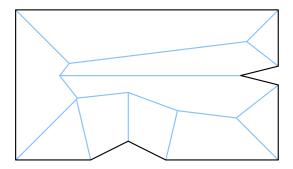
- The straight skeleton was introduced by Aichholzer et al. 1995 [1].
- Eppstein and Erickson [3] introduced in 1999 an algorithm with the current best worst-case complexity: For a simple polygon (with holes) it requires $\mathcal{O}(n^{17/11+\varepsilon})$ time and space to compute the (weighted) straight skeleton.
- More resent results with lower time/space-complexity are known [2, 6]¹ but only for (unweighted) straight skeletons.

Overview

- Our work is based on the work of Huber and Held (IJCGA 2012) on straight-skeleton computation based on motorcycle graphs [4].
- Using an *extended wavefront* they transform split events into edge events, shifting the complexity to another event.
- We revisit their work and show required changes to apply their approach to the weighted scenario.

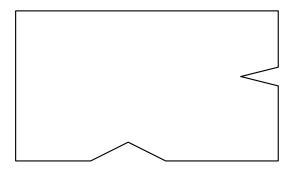
¹Cheng, Mencel, and Vigneron as well as Vigneron and Yan.

- Introduced by Aichholzer et al. 1995 [1].
- Consists only of straight line segments.
- Defined by a propagation process:
 - Edges move inwards in a parallel manner at unit speed.
 - The vertices of the wavefront polygons trace out arcs.
 - Two events: edge event and split event



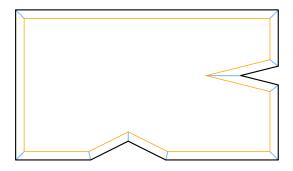
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Introduced by Aichholzer et al. 1995 [1].
- Consists only of straight line segments.
- Defined by a propagation process:
 - Edges move inwards in a parallel manner at unit speed.
 - The vertices of the wavefront polygons trace out arcs.
 - Two events: edge event and split event



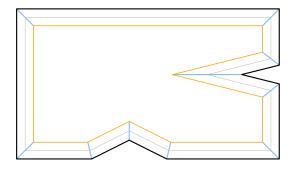
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Introduced by Aichholzer et al. 1995 [1].
- Consists only of straight line segments.
- Defined by a propagation process:
 - Edges move inwards in a parallel manner at unit speed.
 - The vertices of the wavefront polygons trace out arcs.
 - Two events: edge event and split event



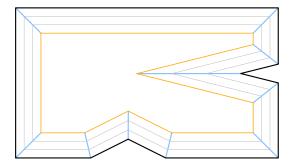
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Introduced by Aichholzer et al. 1995 [1].
- Consists only of straight line segments.
- Defined by a propagation process:
 - Edges move inwards in a parallel manner at unit speed.
 - The vertices of the *wavefront polygons* trace out *arcs*.
 - Two events: edge event and split event



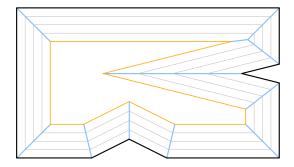
▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Introduced by Aichholzer et al. 1995 [1].
- Consists only of straight line segments.
- Defined by a propagation process:
 - Edges move inwards in a parallel manner at unit speed.
 - The vertices of the *wavefront polygons* trace out *arcs*.
 - Two events: edge event and split event



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

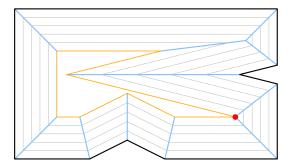
- Introduced by Aichholzer et al. 1995 [1].
- Consists only of straight line segments.
- Defined by a propagation process:
 - Edges move inwards in a parallel manner at unit speed.
 - The vertices of the *wavefront polygons* trace out *arcs*.
 - Two events: edge event and split event



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

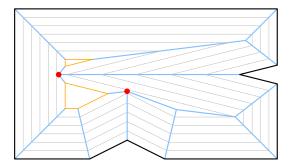
- Introduced by Aichholzer et al. 1995 [1].
- Consists only of straight line segments.
- Defined by a propagation process:
 - Edges move inwards in a parallel manner at unit speed.
 - The vertices of the *wavefront polygons* trace out *arcs*.
 - Two events: edge event

• Two events: edge event and split event



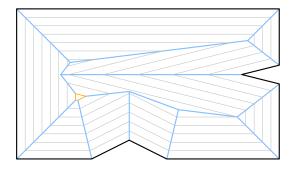
▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Introduced by Aichholzer et al. 1995 [1].
- Consists only of straight line segments.
- Defined by a propagation process:
 - Edges move inwards in a parallel manner at unit speed.
 - The vertices of the *wavefront polygons* trace out *arcs*.
 - Two events: edge event and split event
 - Two events: edge event and split event

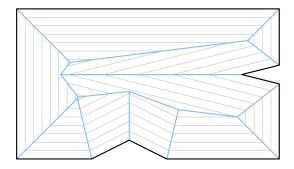


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Introduced by Aichholzer et al. 1995 [1].
- Consists only of straight line segments.
- Defined by a propagation process:
 - Edges move inwards in a parallel manner at unit speed.
 - The vertices of the *wavefront polygons* trace out *arcs*.
 - Two events: edge event and split event

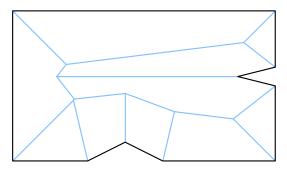


- Introduced by Aichholzer et al. 1995 [1].
- Consists only of straight line segments.
- Defined by a propagation process:
 - Edges move inwards in a parallel manner at unit speed.
 - The vertices of the *wavefront polygons* trace out *arcs*.
 - Two events: edge event and split event



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

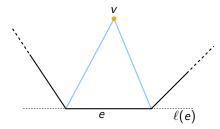
- Introduced by Aichholzer et al. 1995 [1].
- Consists only of straight line segments.
- Defined by a propagation process:
 - Edges move inwards in a parallel manner at unit speed.
 - The vertices of the *wavefront polygons* trace out *arcs*.
 - Two events: edge event and split event
 - The straight skeleton consists of the blue arcs.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Edge Events

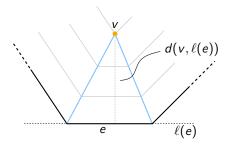
- Compute vanishing time for every edge if finite.
- Enqueue all events in priority queue.
- $\mathcal{O}(n \log n)$ time and $\mathcal{O}(n)$ space.



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Edge Events

- Compute vanishing time for every edge if finite.
- Enqueue all events in priority queue.
- $\mathcal{O}(n \log n)$ time and $\mathcal{O}(n)$ space.



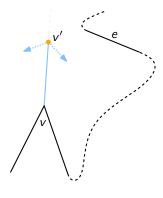
Edge Events

- Compute vanishing time for every edge if finite.
- Enqueue all events in priority queue.
- $\mathcal{O}(n \log n)$ time and $\mathcal{O}(n)$ space.

Split Events

- Let v be a reflex vertex of P. Then there are $\mathcal{O}(n)$ possible split events for v(t) in $\mathcal{W}_P(t)$.
- Enqueue event v' closest to v in $\mathcal{O}(n + \log n)$ time.
- If v' is not reached again $\mathcal{O}(n + \log n)$ for v''.
- We may miss $\mathcal{O}(n)$ times.

• $\mathcal{O}(r(n^2 + n \log n))$ time and $\mathcal{O}(n)$ space.



-

イロト 不得 トイヨト イヨト

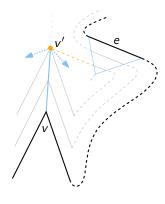
Edge Events

- Compute vanishing time for every edge if finite.
- Enqueue all events in priority queue.
- $\mathcal{O}(n \log n)$ time and $\mathcal{O}(n)$ space.

Split Events

- Let v be a reflex vertex of P. Then there are $\mathcal{O}(n)$ possible split events for v(t) in $\mathcal{W}_P(t)$.
- Enqueue event v' closest to v in $\mathcal{O}(n + \log n)$ time.
- If v' is not reached again $\mathcal{O}(n + \log n)$ for v''.
- We may miss $\mathcal{O}(n)$ times.

• $\mathcal{O}(r(n^2 + n \log n))$ time and $\mathcal{O}(n)$ space.



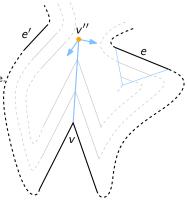
Edge Events

- Compute vanishing time for every edge if finite.
- Enqueue all events in priority queue.
- $\mathcal{O}(n \log n)$ time and $\mathcal{O}(n)$ space.

Split Events

- Let v be a reflex vertex of P. Then there are $\mathcal{O}(n)$ possible split events for v(t) in $\mathcal{W}_P(t)$.
- Enqueue event v' closest to v in $\mathcal{O}(n + \log n)$ time,
- If v' is not reached again $\mathcal{O}(n + \log n)$ for v''.
- We may miss $\mathcal{O}(n)$ times.

• $\mathcal{O}(r(n^2 + n \log n))$ time and $\mathcal{O}(n)$ space.



(日)、

-

Edge Events

- Compute vanishing time for every edge if finite.
- Enqueue all events in priority queue.
- $\mathcal{O}(n \log n)$ time and $\mathcal{O}(n)$ space.

Split Events

- Let v be a reflex vertex of P. Then there are $\mathcal{O}(n)$ possible split events for v(t) in $\mathcal{W}_P(t)$.
- Enqueue event v' closest to v in $\mathcal{O}(n + \log n)$ time,

e'

イロト イポト イヨト イヨト

- If v' is not reached again $\mathcal{O}(n + \log n)$ for v''.
- We may miss $\mathcal{O}(n)$ times.
- $\mathcal{O}(r(n^2 + n \log n))$ time and $\mathcal{O}(n)$ space.

Edge Events

- Compute vanishing time for every edge if finite.
- Enqueue all events in priority queue.
- $\mathcal{O}(n \log n)$ time and $\mathcal{O}(n)$ space.

Split Events

- Let v be a reflex vertex of P. Then there are $\mathcal{O}(n)$ possible split events for v(t) in $\mathcal{W}_P(t)$.
- Enqueue event v' closest to v in $\mathcal{O}(n + \log n)$ time,

e'

・ロト ・ 雪 ト ・ ヨ ト

э

- If v' is not reached again $\mathcal{O}(n + \log n)$ for v''.
- We may miss $\mathcal{O}(n)$ times.
- $\mathcal{O}(r(n^2 + n \log n))$ time and $\mathcal{O}(n)$ space.

Multi-Split Event

• When two reflex wavefront vertices meet at a common point².

²Related to vertex event [3].

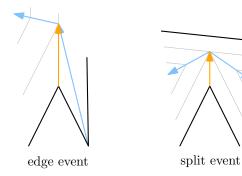
 Every event, where a reflex wavefront vertex is involved, reduces the number of reflex vertices in W_P(t).

• Can we know these reflex arcs in advance?

edge event

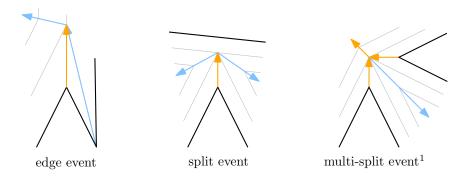
 Every event, where a reflex wavefront vertex is involved, reduces the number of reflex vertices in W_P(t).

• Can we know these reflex arcs in advance?



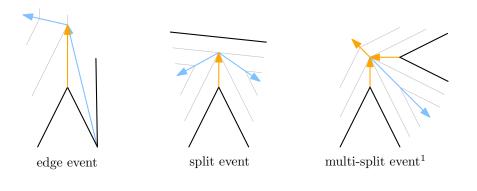
• Every event, where a reflex wavefront vertex is involved, reduces the number of reflex vertices in $W_P(t)$.

• Can we know these reflex arcs in advance?



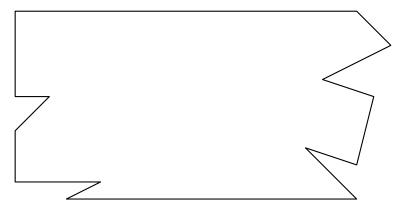
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Every event, where a reflex wavefront vertex is involved, reduces the number of reflex vertices in $W_P(t)$.
- Can we know these reflex arcs in advance?

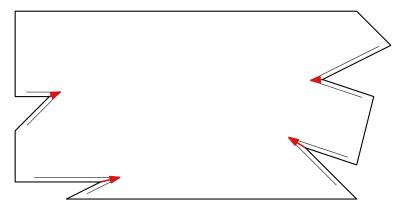


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

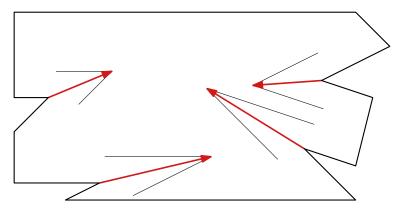
- Start a motorcycle *m* for every reflex vertex *v* of $W_P(t)$ such that *m* inherits the velocity vector of *v*.
- Every motorcycle leaves a trace behind and stops if it crashes into another trace or the polygon boundary.
- The motorcycle graph $\mathcal{M}(P)^3$ is formed when all motorcycles have crashed.



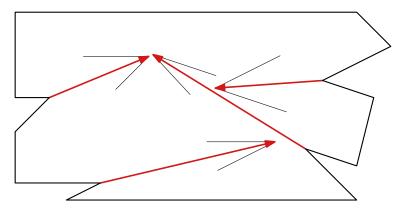
- Start a motorcycle *m* for every reflex vertex *v* of $W_P(t)$ such that *m* inherits the velocity vector of *v*.
- Every motorcycle leaves a trace behind and stops if it crashes into another trace or the polygon boundary.
- The motorcycle graph $\mathcal{M}(P)^3$ is formed when all motorcycles have crashed.



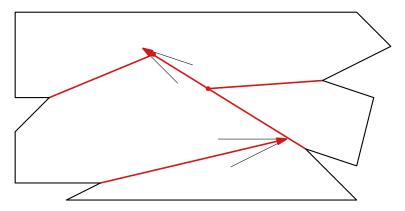
- Start a motorcycle *m* for every reflex vertex *v* of $W_P(t)$ such that *m* inherits the velocity vector of *v*.
- Every motorcycle leaves a trace behind and stops if it crashes into another trace or the polygon boundary.
- The motorcycle graph $\mathcal{M}(P)^3$ is formed when all motorcycles have crashed.



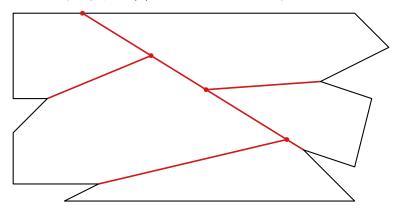
- Start a motorcycle *m* for every reflex vertex *v* of $W_P(t)$ such that *m* inherits the velocity vector of *v*.
- Every motorcycle leaves a trace behind and stops if it crashes into another trace or the polygon boundary.
- The motorcycle graph $\mathcal{M}(P)^3$ is formed when all motorcycles have crashed.



- Start a motorcycle *m* for every reflex vertex *v* of $W_P(t)$ such that *m* inherits the velocity vector of *v*.
- Every motorcycle leaves a trace behind and stops if it crashes into another trace or the polygon boundary.
- The motorcycle graph $\mathcal{M}(P)^3$ is formed when all motorcycles have crashed.

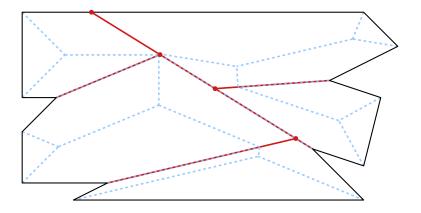


- Start a motorcycle m for every reflex vertex v of W_P(t) such that m inherits the velocity vector of v.
- Every motorcycle leaves a trace behind and stops if it crashes into another trace or the polygon boundary.
- The motorcycle graph $\mathcal{M}(P)^3$ is formed when all motorcycles have crashed.



Motorcycle Graph and S(P) (cont'd)

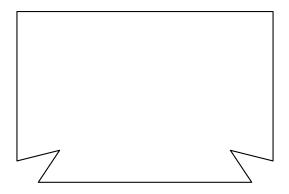
• $\mathcal{M}'(P)$ covers all *reflex arcs* of $\mathcal{S}(P)^4$.



⁴Various publications [2, 3]

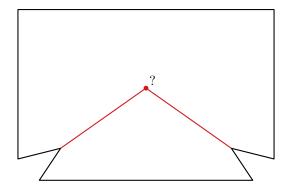
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• $\mathcal{M}'(P)$ covers all *reflex arcs* of $\mathcal{S}(P)^4$.



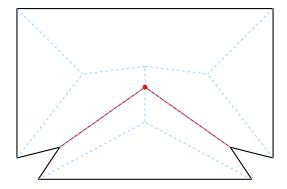
⁴Various publications [2, 3]

- $\mathcal{M}'(P)$ covers "all" *reflex arcs* of $\mathcal{S}(P)^4$, such that no two motorcycles reach the same point simultaneously.
- Huber and Held [4] allow motorcycles to have different starting times and call it generalized motorcycle graph $\mathcal{M}(P)$.



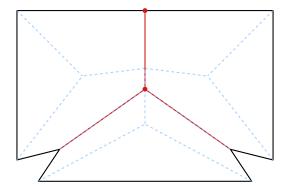
▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- $\mathcal{M}'(P)$ covers "all" *reflex arcs* of $\mathcal{S}(P)^4$, such that no two motorcycles reach the same point simultaneously.
- Huber and Held [4] allow motorcycles to have different starting times and call it generalized motorcycle graph $\mathcal{M}(P)$.



⁴Various publications [2, 3]

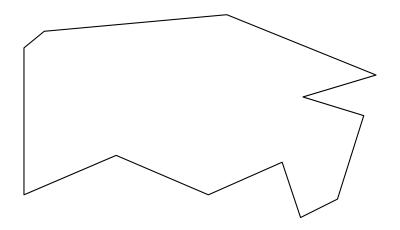
- $\mathcal{M}'(P)$ covers "all" *reflex arcs* of $\mathcal{S}(P)^4$, such that no two motorcycles reach the same point simultaneously.
- Huber and Held [4] allow motorcycles to have different starting times and call it generalized motorcycle graph $\mathcal{M}(P)$.



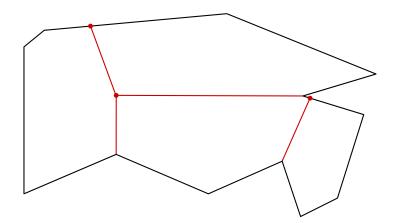
▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

⁴Various publications [2, 3]

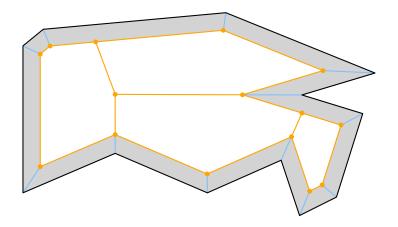
- Huber and Held introduce the *extended* wavefront $\mathcal{W}_P^*(t)$.
- $\mathcal{W}_{P}^{*}(t)$ consists of the wavefront at time t and the portion of $\mathcal{M}(P)$ that lies inside that wavefront.
- All regions in $\mathcal{W}_{P}^{*}(t)$ are convex and all events are edge events.



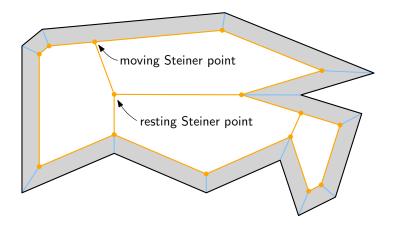
- Huber and Held introduce the *extended* wavefront $\mathcal{W}_P^*(t)$.
- \$\mathcal{W}_P^*(t)\$ consists of the wavefront at time t and the portion of \$\mathcal{M}(P)\$ that lies inside that wavefront.
- All regions in $\mathcal{W}_{P}^{*}(t)$ are convex and all events are edge events.



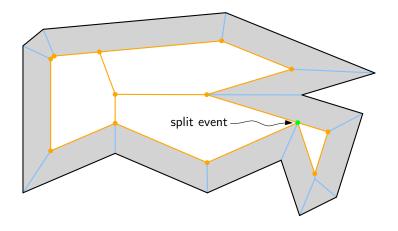
- Huber and Held introduce the *extended* wavefront $\mathcal{W}_P^*(t)$.
- \$\mathcal{W}_P^*(t)\$ consists of the wavefront at time t and the portion of \$\mathcal{M}(P)\$ that lies inside that wavefront.
- All regions in $\mathcal{W}_{P}^{*}(t)$ are convex and all events are edge events.



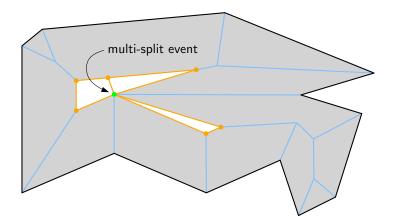
- Huber and Held introduce the *extended* wavefront $\mathcal{W}_P^*(t)$.
- \$\mathcal{W}_P^*(t)\$ consists of the wavefront at time t and the portion of \$\mathcal{M}(P)\$ that lies inside that wavefront.
- All regions in $\mathcal{W}_{P}^{*}(t)$ are convex and all events are edge events.



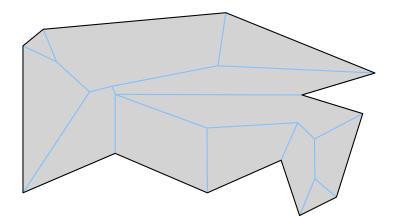
- Huber and Held introduce the *extended* wavefront $\mathcal{W}_P^*(t)$.
- \$\mathcal{W}_P^*(t)\$ consists of the wavefront at time t and the portion of \$\mathcal{M}(P)\$ that lies inside that wavefront.
- All regions in $\mathcal{W}_{P}^{*}(t)$ are convex and all events are edge events.



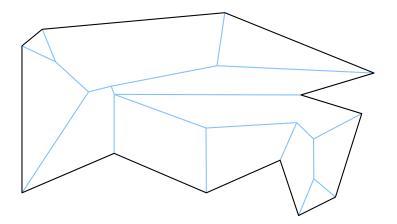
- Huber and Held introduce the *extended* wavefront $\mathcal{W}_P^*(t)$.
- \$\mathcal{W}_P^*(t)\$ consists of the wavefront at time t and the portion of \$\mathcal{M}(P)\$ that lies inside that wavefront.
- All regions in $\mathcal{W}_{P}^{*}(t)$ are convex and all events are edge events.



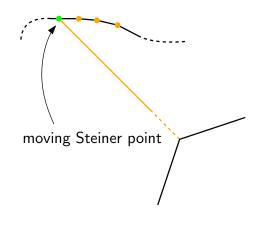
- Huber and Held introduce the *extended* wavefront $\mathcal{W}_P^*(t)$.
- \$\mathcal{W}_P^*(t)\$ consists of the wavefront at time t and the portion of \$\mathcal{M}(P)\$ that lies inside that wavefront.
- All regions in $\mathcal{W}_{P}^{*}(t)$ are convex and all events are edge events.



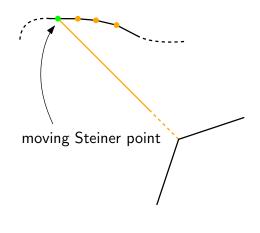
- Huber and Held introduce the *extended* wavefront $\mathcal{W}_P^*(t)$.
- \$\mathcal{W}_P^*(t)\$ consists of the wavefront at time t and the portion of \$\mathcal{M}(P)\$ that lies inside that wavefront.
- All regions in $\mathcal{W}_{P}^{*}(t)$ are convex and all events are edge events.



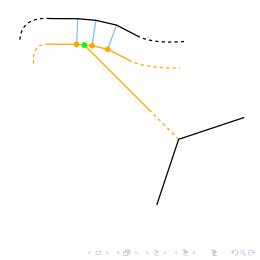
- Using $\mathcal{W}_{P}^{*}(t)$ one can compute $\mathcal{S}(P)$ in $\mathcal{O}((n+nr)\log n)$ time and linear space.
- The number of *switch events*, i.e., when a wavefront vertex meets a moving Steiner point (where the arc of a motorcycle edge ends) is in O(nr).



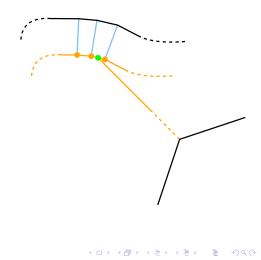
- Using $\mathcal{W}_{P}^{*}(t)$ one can compute $\mathcal{S}(P)$ in $\mathcal{O}((n + nr) \log n)$ time and linear space.
- The number of *switch events*, i.e., when a wavefront vertex meets a moving Steiner point (where the arc of a motorcycle edge ends) is in O(nr).



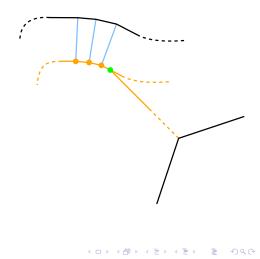
- Using $\mathcal{W}_{P}^{*}(t)$ one can compute $\mathcal{S}(P)$ in $\mathcal{O}((n+nr)\log n)$ time and linear space.
- The number of *switch events*, i.e., when a wavefront vertex meets a moving Steiner point (where the arc of a motorcycle edge ends) is in O(nr).



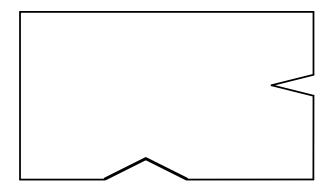
- Using $\mathcal{W}_{P}^{*}(t)$ one can compute $\mathcal{S}(P)$ in $\mathcal{O}((n+nr)\log n)$ time and linear space.
- The number of *switch events*, i.e., when a wavefront vertex meets a moving Steiner point (where the arc of a motorcycle edge ends) is in O(nr).



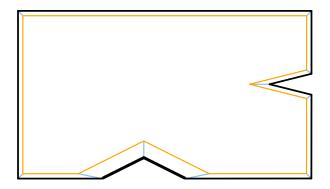
- Using $\mathcal{W}_{P}^{*}(t)$ one can compute $\mathcal{S}(P)$ in $\mathcal{O}((n + nr) \log n)$ time and linear space.
- The number of *switch events*, i.e., when a wavefront vertex meets a moving Steiner point (where the arc of a motorcycle edge ends) is in O(nr).



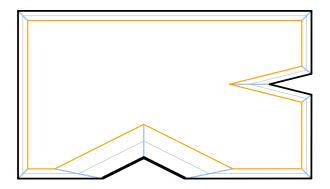
- Wavefront W_P(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the weight function σ ∈ ℝ⁺ provides the strictly positive edge weights.
- Thick edges have σ of about 3, unit weight otherwise.
- S(P) (left) and $S(P, \sigma)$ (right).



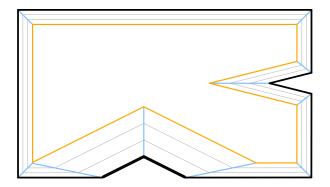
- Wavefront W_P(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the weight function σ ∈ ℝ⁺ provides the strictly positive edge weights.
- Thick edges have σ of about 3, unit weight otherwise.
- S(P) (left) and $S(P, \sigma)$ (right).



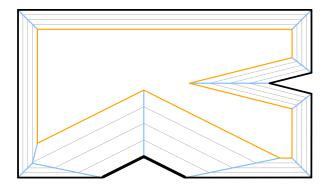
- Wavefront W_P(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the weight function σ ∈ ℝ⁺ provides the strictly positive edge weights.
- Thick edges have σ of about 3, unit weight otherwise.
- S(P) (left) and $S(P, \sigma)$ (right).



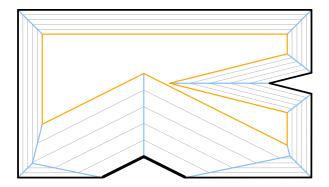
- Wavefront W_P(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the weight function σ ∈ ℝ⁺ provides the strictly positive edge weights.
- Thick edges have σ of about 3, unit weight otherwise.
- S(P) (left) and $S(P, \sigma)$ (right).



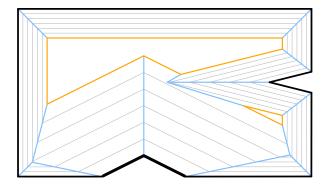
- Wavefront W_P(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the weight function σ ∈ ℝ⁺ provides the strictly positive edge weights.
- Thick edges have σ of about 3, unit weight otherwise.
- S(P) (left) and $S(P, \sigma)$ (right).



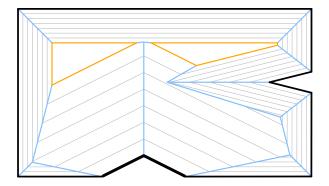
- Wavefront W_P(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the weight function σ ∈ ℝ⁺ provides the strictly positive edge weights.
- Thick edges have σ of about 3, unit weight otherwise.
- S(P) (left) and $S(P, \sigma)$ (right).



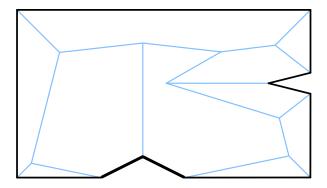
- Wavefront W_P(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the weight function σ ∈ ℝ⁺ provides the strictly positive edge weights.
- Thick edges have σ of about 3, unit weight otherwise.
- S(P) (left) and $S(P, \sigma)$ (right).



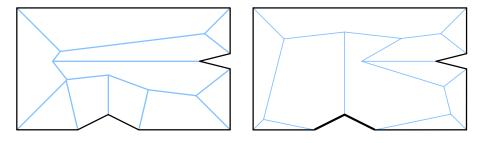
- Wavefront W_P(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the weight function σ ∈ ℝ⁺ provides the strictly positive edge weights.
- Thick edges have σ of about 3, unit weight otherwise.
- S(P) (left) and $S(P, \sigma)$ (right).



- Wavefront W_P(t, σ) traces out the weighted straight skeleton S(P, σ), s.t. the weight function σ ∈ ℝ⁺ provides the strictly positive edge weights.
- Thick edges have σ of about 3, unit weight otherwise.
- $\mathcal{S}(P)$ (left) and $\mathcal{S}(P,\sigma)$ (right).



- Wavefront $W_P(t, \sigma)$ traces out the weighted straight skeleton $S(P, \sigma)$, s.t. the weight function $\sigma \in \mathbb{R}^+$ provides the strictly positive edge weights.
- Thick edges have σ of about 3, unit weight otherwise.
- $\mathcal{S}(P)$ (left) and $\mathcal{S}(P,\sigma)$ (right).

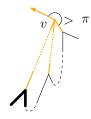


• Reflex vertices of $\mathcal{W}(P, \sigma)$ are not limited by first event.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

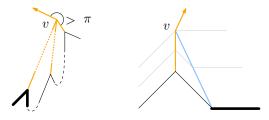
э.

- $\mathcal{M}(P)$ covers only initial *reflex* arcs of $\mathcal{S}(P, \sigma)$.
- $\mathcal{M}(P)$ may have to be updated *n* times.
- Updating $\mathcal{M}(P)$ results in re-computation.



mutli-split event

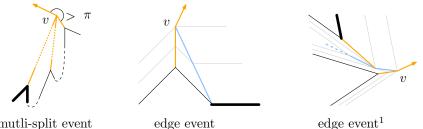
- Reflex vertices of $\mathcal{W}(P, \sigma)$ are not limited by first event.
- $\mathcal{M}(P)$ covers only initial *reflex* arcs of $\mathcal{S}(P, \sigma)$.
- $\mathcal{M}(P)$ may have to be updated *n* times.
- Updating $\mathcal{M}(P)$ results in re-computation.



mutli-split event

edge event

- Reflex vertices of $\mathcal{W}(P, \sigma)$ are not limited by first event.
- $\mathcal{M}(P)$ covers only initial *reflex* arcs of $\mathcal{S}(P, \sigma)$.
- $\mathcal{M}(P)$ may have to be updated *n* times.
- Updating $\mathcal{M}(P)$ results in re-computation.

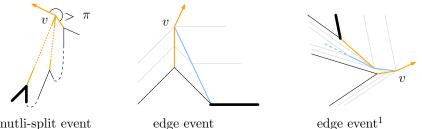


mutli-split event

edge event

¹ after a split event.

- Reflex vertices of $\mathcal{W}(P, \sigma)$ are not limited by first event.
- $\mathcal{M}(P)$ covers only initial *reflex* arcs of $\mathcal{S}(P, \sigma)$.
- $\mathcal{M}(P)$ may have to be updated *n* times.
- Updating $\mathcal{M}(P)$ results in re-computation.

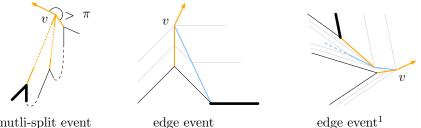


mutli-split event

edge event

¹ after a split event.

- Reflex vertices of $\mathcal{W}(P, \sigma)$ are not limited by first event.
- $\mathcal{M}(P)$ covers only initial *reflex* arcs of $\mathcal{S}(P, \sigma)$.
- $\mathcal{M}(P)$ may have to be updated *n* times.
- Updating $\mathcal{M}(P)$ results in re-computation.



¹ after a split event.

mutli-split event

edge event

- For every reflex vertex v of P we construct a line segment s.
- Let s start at v, lie on v(t) of $W_P(t, \sigma)$, and end at the first intersection with the boundary of P.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• The set of all such line segments forms $\mathcal{A}(P)$.

- For every reflex vertex v of P we construct a line segment s.
- Let s start at ν, lie on ν(t) of W_P(t, σ), and end at the first intersection with the boundary of P.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• The set of all such line segments forms $\mathcal{A}(P)$.

- For every reflex vertex v of P we construct a line segment s.
- Let s start at ν, lie on ν(t) of W_P(t, σ), and end at the first intersection with the boundary of P.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• The set of all such line segments forms $\mathcal{A}(P)$.

- For every reflex vertex v of P we construct a line segment s.
- Let s start at v, lie on v(t) of $W_P(t, \sigma)$, and end at the first intersection with the boundary of P.
- The set of all such line segments forms $\mathcal{A}(P)$.

Linear or Quadratic Space

- Store all \$\mathcal{O}(r^2)\$ intersections in a sorted manner: \$\mathcal{O}(r^2 \log r)\$ time and \$\mathcal{O}(r^2)\$ space. Obtain the next intersection in \$\mathcal{O}(1)\$ time.
- Store only the closest intersection to a point for all segments in $\mathcal{A}(P)$, i.e., overall $\mathcal{O}(r)$ intersections. Obtain the next intersection in $\mathcal{O}(r)$ time.

- For every reflex vertex v of P we construct a line segment s.
- Let s start at v, lie on v(t) of $W_P(t, \sigma)$, and end at the first intersection with the boundary of P.
- The set of all such line segments forms $\mathcal{A}(P)$.

Linear or Quadratic Space

- Store all \$\mathcal{O}(r^2)\$ intersections in a sorted manner: \$\mathcal{O}(r^2 \log r)\$ time and \$\mathcal{O}(r^2)\$ space. Obtain the next intersection in \$\mathcal{O}(1)\$ time.
- Store only the closest intersection to a point for all segments in $\mathcal{A}(P)$, i.e., overall $\mathcal{O}(r)$ intersections. Obtain the next intersection in $\mathcal{O}(r)$ time.

- For every reflex vertex v of P we construct a line segment s.
- Let s start at ν, lie on ν(t) of W_P(t, σ), and end at the first intersection with the boundary of P.
- The set of all such line segments forms $\mathcal{A}(P)$.

Linear or Quadratic Space

- Store all \$\mathcal{O}(r^2)\$ intersections in a sorted manner: \$\mathcal{O}(r^2 \log r)\$ time and \$\mathcal{O}(r^2)\$ space. Obtain the next intersection in \$\mathcal{O}(1)\$ time.
- Store only the closest intersection to a point for all segments in $\mathcal{A}(P)$, i.e., overall $\mathcal{O}(r)$ intersections. Obtain the next intersection in $\mathcal{O}(r)$ time.

Space Time Trade-off

- For a fixed k in $1 \le k \le r$. Let s a segement in $\mathcal{A}(P)$.
- We compute and store the next k intersections on s in $O(r \log r)$ time.
- On *s* are at most *r* intersections points, thus we have to compute the next *k* intersections at most *r/k* times.

- For every reflex vertex v of P we construct a line segment s.
- Let s start at ν, lie on ν(t) of W_P(t, σ), and end at the first intersection with the boundary of P.
- The set of all such line segments forms $\mathcal{A}(P)$.

Linear or Quadratic Space

- Store all \$\mathcal{O}(r^2)\$ intersections in a sorted manner: \$\mathcal{O}(r^2 \log r)\$ time and \$\mathcal{O}(r^2)\$ space. Obtain the next intersection in \$\mathcal{O}(1)\$ time.
- Store only the closest intersection to a point for all segments in $\mathcal{A}(P)$, i.e., overall $\mathcal{O}(r)$ intersections. Obtain the next intersection in $\mathcal{O}(r)$ time.

Space Time Trade-off

- For a fixed k in $1 \le k \le r$. Let s a segement in $\mathcal{A}(P)$.
- We compute and store the next k intersections on s in $O(r \log r)$ time.
- On *s* are at most *r* intersections points, thus we have to compute the next *k* intersections at most *r/k* times.

- For every reflex vertex v of P we construct a line segment s.
- Let s start at v, lie on v(t) of $W_P(t, \sigma)$, and end at the first intersection with the boundary of P.
- The set of all such line segments forms $\mathcal{A}(P)$.

Linear or Quadratic Space

- Store all \$\mathcal{O}(r^2)\$ intersections in a sorted manner: \$\mathcal{O}(r^2 \log r)\$ time and \$\mathcal{O}(r^2)\$ space. Obtain the next intersection in \$\mathcal{O}(1)\$ time.
- Store only the closest intersection to a point for all segments in $\mathcal{A}(P)$, i.e., overall $\mathcal{O}(r)$ intersections. Obtain the next intersection in $\mathcal{O}(r)$ time.

Space Time Trade-off

- For a fixed k in $1 \le k \le r$. Let s a segement in $\mathcal{A}(P)$.
- We compute and store the next k intersections on s in $O(r \log r)$ time.
- On *s* are at most *r* intersections points, thus we have to compute the next *k* intersections at most *r*/*k* times.

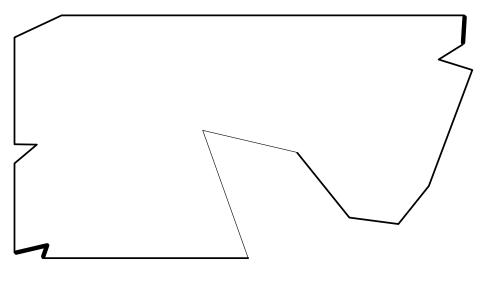
- For every reflex vertex v of P we construct a line segment s.
- Let s start at ν, lie on ν(t) of W_P(t, σ), and end at the first intersection with the boundary of P.
- The set of all such line segments forms $\mathcal{A}(P)$.

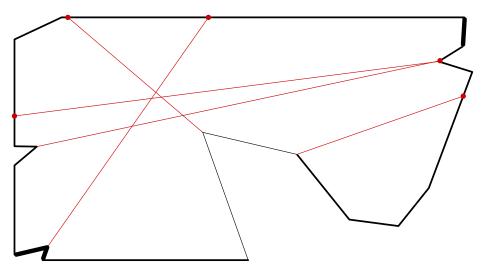
Linear or Quadratic Space

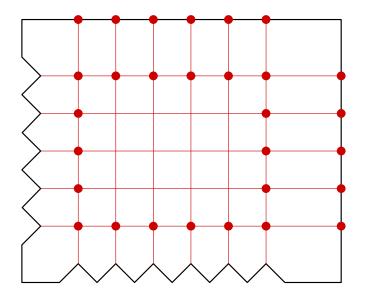
- Store all \$\mathcal{O}(r^2)\$ intersections in a sorted manner: \$\mathcal{O}(r^2 \log r)\$ time and \$\mathcal{O}(r^2)\$ space. Obtain the next intersection in \$\mathcal{O}(1)\$ time.
- Store only the closest intersection to a point for all segments in $\mathcal{A}(P)$, i.e., overall $\mathcal{O}(r)$ intersections. Obtain the next intersection in $\mathcal{O}(r)$ time.

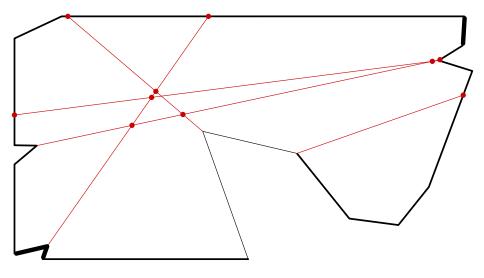
Space Time Trade-off

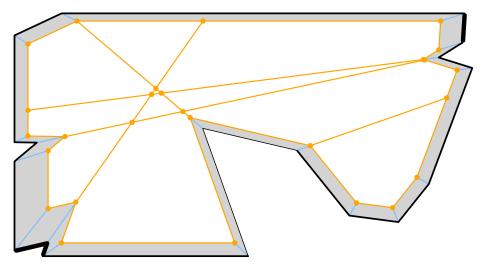
- For a fixed k in $1 \le k \le r$. Let s a segement in $\mathcal{A}(P)$.
- We compute and store the next k intersections on s in $O(r \log r)$ time.
- On *s* are at most *r* intersections points, thus we have to compute the next *k* intersections at most *r*/*k* times.



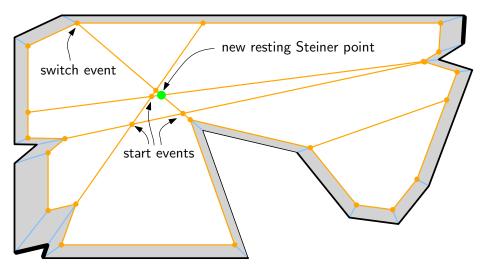




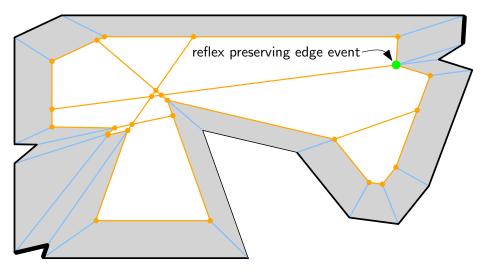




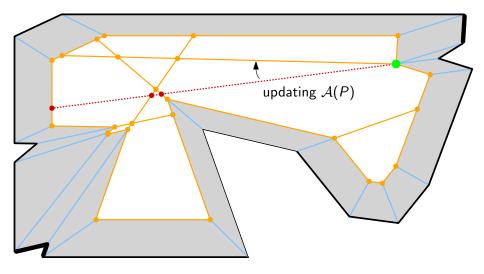
Extended Wavefront $\mathcal{W}_P^*(t,\sigma)$



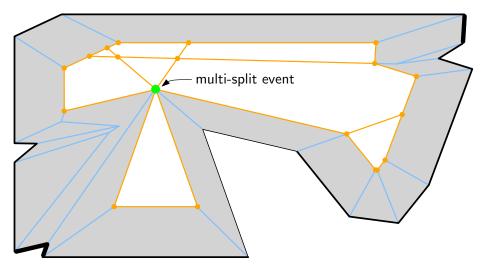
Extended Wavefront $\mathcal{W}_P^*(t,\sigma)$

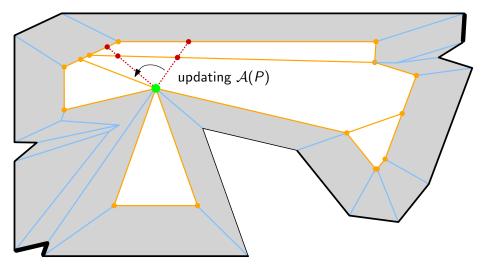


Extended Wavefront $\mathcal{W}_P^*(t,\sigma)$

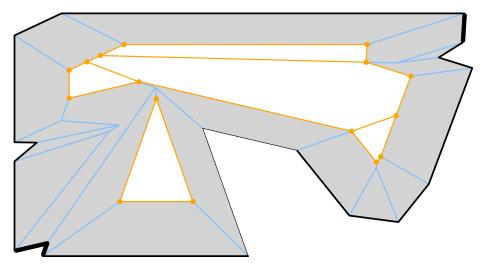


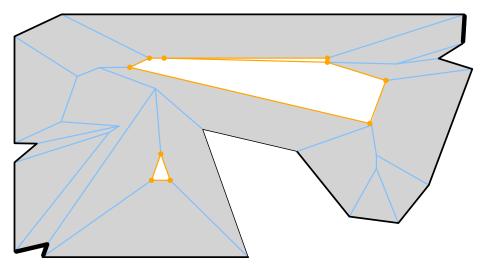
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

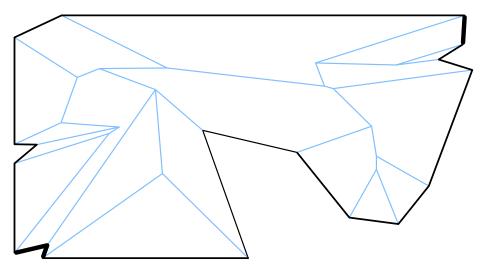




◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?







・ロト ・ 一 ト ・ モト ・ モト

æ

P consists of n vertices, r of which are reflex. The propagation of $\mathcal{W}_{P}^{*}(t,\sigma)$ results in:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $\mathcal{O}(n)$ split/edge events,
- $\mathcal{O}(nr)$ switch events, and
- $\mathcal{O}(r^2)$ start events.

P consists of n vertices, r of which are reflex. The propagation of $\mathcal{W}_{P}^{*}(t,\sigma)$ results in:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

O(n) split/edge events,

- $\mathcal{O}(nr)$ switch events, and
- $\mathcal{O}(r^2)$ start events.

P consists of n vertices, r of which are reflex. The propagation of $\mathcal{W}_{P}^{*}(t,\sigma)$ results in:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- O(n) split/edge events,
- \$\mathcal{O}(nr)\$ switch events, and
- $\mathcal{O}(r^2)$ start events.

P consists of n vertices, r of which are reflex. The propagation of $\mathcal{W}_{P}^{*}(t,\sigma)$ results in:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- O(n) split/edge events,
- \$\mathcal{O}(nr)\$ switch events, and
- \$\mathcal{O}(r^2)\$ start events.

P consists of n vertices, r of which are reflex. The propagation of $\mathcal{W}_{P}^{*}(t,\sigma)$ results in:

- $\mathcal{O}(n)$ split/edge events,
- \$\mathcal{O}(nr)\$ switch events, and
- \$\mathcal{O}(r^2)\$ start events.
- Computing $\mathcal{W}_P^*(t,\sigma)$ at t = 0 takes $\mathcal{O}(n \log n + nr)$ time.
- Handling one (reflex preserving) edge event takes $O(n + r + r \log n)$ time:
 - Updating $\mathcal{A}(P)$: $\mathcal{O}(r)$ time
 - Adding/removing a segment of the wavefront: O(n) time.
 - The new segment in $\mathcal{A}(P)$ may invalidate $\mathcal{O}(r)$ events in \mathcal{Q} : $\mathcal{O}(r \log n)$.

- Handling one start event takes $O(r + \log n)$ time:
 - $\mathcal{O}(r)$ time to find the next intersection in $\mathcal{A}(P)$
 - $\mathcal{O}(\log n)$ time to add the event to \mathcal{Q}

P consists of n vertices, r of which are reflex. The propagation of $\mathcal{W}_{P}^{*}(t,\sigma)$ results in:

- $\mathcal{O}(n)$ split/edge events,
- \$\mathcal{O}(nr)\$ switch events, and
- \$\mathcal{O}(r^2)\$ start events.
- Computing $\mathcal{W}_P^*(t,\sigma)$ at t = 0 takes $\mathcal{O}(n \log n + nr)$ time.
- Handling one (reflex preserving) edge event takes $O(n + r + r \log n)$ time:
 - Updating $\mathcal{A}(P)$: $\mathcal{O}(r)$ time.
 - Adding/removing a segment of the wavefront: $\mathcal{O}(n)$ time.
 - The new segment in $\mathcal{A}(P)$ may invalidate $\mathcal{O}(r)$ events in \mathcal{Q} : $\mathcal{O}(r \log n)$.

- Handling one start event takes $O(r + \log n)$ time:
 - $\mathcal{O}(r)$ time to find the next intersection in $\mathcal{A}(P)$
 - $\mathcal{O}(\log n)$ time to add the event to \mathcal{Q}

P consists of n vertices, r of which are reflex. The propagation of $\mathcal{W}_{P}^{*}(t,\sigma)$ results in:

- $\mathcal{O}(n)$ split/edge events,
- \$\mathcal{O}(nr)\$ switch events, and
- \$\mathcal{O}(r^2)\$ start events.
- Computing $\mathcal{W}_P^*(t,\sigma)$ at t = 0 takes $\mathcal{O}(n \log n + nr)$ time.
- Handling one (reflex preserving) edge event takes $O(n + r + r \log n)$ time:
 - Updating $\mathcal{A}(P)$: $\mathcal{O}(r)$ time.
 - Adding/removing a segment of the wavefront: $\mathcal{O}(n)$ time.
 - The new segment in $\mathcal{A}(P)$ may invalidate $\mathcal{O}(r)$ events in \mathcal{Q} : $\mathcal{O}(r \log n)$.

- Handling one start event takes $O(r + \log n)$ time:
 - $\mathcal{O}(r)$ time to find the next intersection in $\mathcal{A}(P)$
 - $\mathcal{O}(\log n)$ time to add the event to \mathcal{Q}

P consists of n vertices, r of which are reflex. The propagation of $\mathcal{W}_{P}^{*}(t,\sigma)$ results in:

- $\mathcal{O}(n)$ split/edge events,
- \$\mathcal{O}(nr)\$ switch events, and
- \$\mathcal{O}(r^2)\$ start events.
- Computing $\mathcal{W}_P^*(t,\sigma)$ at t = 0 takes $\mathcal{O}(n \log n + nr)$ time.
- Handling one (reflex preserving) edge event takes $O(n + r + r \log n)$ time:
 - Updating $\mathcal{A}(P)$: $\mathcal{O}(r)$ time.
 - Adding/removing a segment of the wavefront: O(n) time.
 - The new segment in $\mathcal{A}(P)$ may invalidate $\mathcal{O}(r)$ events in \mathcal{Q} : $\mathcal{O}(r \log n)$.

- Handling one start event takes $O(r + \log n)$ time:
 - $\mathcal{O}(r)$ time to find the next intersection in $\mathcal{A}(P)$
 - $\mathcal{O}(\log n)$ time to add the event to \mathcal{Q}

P consists of n vertices, r of which are reflex. The propagation of $\mathcal{W}_{P}^{*}(t,\sigma)$ results in:

- O(n) split/edge events,
- \$\mathcal{O}(nr)\$ switch events, and
- \$\mathcal{O}(r^2)\$ start events.
- Computing $\mathcal{W}_P^*(t,\sigma)$ at t = 0 takes $\mathcal{O}(n \log n + nr)$ time.
- Handling one (reflex preserving) edge event takes $O(n + r + r \log n)$ time:
 - Updating $\mathcal{A}(P)$: $\mathcal{O}(r)$ time.
 - Adding/removing a segment of the wavefront: O(n) time.
 - The new segment in $\mathcal{A}(P)$ may invalidate $\mathcal{O}(r)$ events in \mathcal{Q} : $\mathcal{O}(r \log n)$.

- Handling one start event takes $O(r + \log n)$ time:
 - $\mathcal{O}(r)$ time to find the next intersection in $\mathcal{A}(P)$
 - $\mathcal{O}(\log n)$ time to add the event to \mathcal{Q}

P consists of n vertices, r of which are reflex. The propagation of $\mathcal{W}_{P}^{*}(t,\sigma)$ results in:

- O(n) split/edge events,
- \$\mathcal{O}(nr)\$ switch events, and
- \$\mathcal{O}(r^2)\$ start events.
- Computing $\mathcal{W}_P^*(t,\sigma)$ at t = 0 takes $\mathcal{O}(n \log n + nr)$ time.
- Handling one (reflex preserving) edge event takes $O(n + r + r \log n)$ time:
 - Updating $\mathcal{A}(P)$: $\mathcal{O}(r)$ time.
 - Adding/removing a segment of the wavefront: O(n) time.
 - The new segment in $\mathcal{A}(P)$ may invalidate $\mathcal{O}(r)$ events in \mathcal{Q} : $\mathcal{O}(r \log n)$.

- Handling one start event takes $O(r + \log n)$ time:
 - $\mathcal{O}(r)$ time to find the next intersection in $\mathcal{A}(P)$.
 - $\mathcal{O}(\log n)$ time to add the event to \mathcal{Q} .

P consists of n vertices, r of which are reflex. The propagation of $\mathcal{W}_{P}^{*}(t,\sigma)$ results in:

- O(n) split/edge events,
- \$\mathcal{O}(nr)\$ switch events, and
- \$\mathcal{O}(r^2)\$ start events.
- Computing $\mathcal{W}_P^*(t,\sigma)$ at t = 0 takes $\mathcal{O}(n \log n + nr)$ time.
- Handling one (reflex preserving) edge event takes $O(n + r + r \log n)$ time:
 - Updating $\mathcal{A}(P)$: $\mathcal{O}(r)$ time.
 - Adding/removing a segment of the wavefront: $\mathcal{O}(n)$ time.
 - The new segment in $\mathcal{A}(P)$ may invalidate $\mathcal{O}(r)$ events in \mathcal{Q} : $\mathcal{O}(r \log n)$.

- Handling one start event takes $O(r + \log n)$ time:
 - $\mathcal{O}(r)$ time to find the next intersection in $\mathcal{A}(P)$.
 - $\mathcal{O}(\log n)$ time to add the event to \mathcal{Q} .

P consists of n vertices, r of which are reflex. The propagation of $\mathcal{W}_{P}^{*}(t,\sigma)$ results in:

- O(n) split/edge events,
- \$\mathcal{O}(nr)\$ switch events, and
- \$\mathcal{O}(r^2)\$ start events.
- Computing $\mathcal{W}_P^*(t,\sigma)$ at t = 0 takes $\mathcal{O}(n \log n + nr)$ time.
- Handling one (reflex preserving) edge event takes $O(n + r + r \log n)$ time:
 - Updating $\mathcal{A}(P)$: $\mathcal{O}(r)$ time.
 - Adding/removing a segment of the wavefront: $\mathcal{O}(n)$ time.
 - The new segment in $\mathcal{A}(P)$ may invalidate $\mathcal{O}(r)$ events in \mathcal{Q} : $\mathcal{O}(r \log n)$.

- Handling one start event takes $O(r + \log n)$ time:
 - $\mathcal{O}(r)$ time to find the next intersection in $\mathcal{A}(P)$.
 - \$\mathcal{O}\$(log n)\$ time to add the event to \$\mathcal{Q}\$.

P consists of n vertices, r of which are reflex. The propagation of $\mathcal{W}_{P}^{*}(t,\sigma)$ results in:

- O(n) split/edge events,
- \$\mathcal{O}(nr)\$ switch events, and
- \$\mathcal{O}(r^2)\$ start events.
- Computing $\mathcal{W}_P^*(t,\sigma)$ at t = 0 takes $\mathcal{O}(n \log n + nr)$ time.
- Handling one (reflex preserving) edge event takes $O(n + r + r \log n)$ time:
 - Updating $\mathcal{A}(P)$: $\mathcal{O}(r)$ time.
 - Adding/removing a segment of the wavefront: O(n) time.
 - The new segment in $\mathcal{A}(P)$ may invalidate $\mathcal{O}(r)$ events in \mathcal{Q} : $\mathcal{O}(r \log n)$.

- Handling one start event takes $O(r + \log n)$ time:
 - $\mathcal{O}(r)$ time to find the next intersection in $\mathcal{A}(P)$.
 - $\mathcal{O}(\log n)$ time to add the event to \mathcal{Q} .

Overall Complexity

classical
$$\begin{pmatrix} time & space \\ \mathcal{O}(n^2 + r^3 + nr \log n) & \mathcal{O}(n) \end{pmatrix}$$

P consists of n vertices, r of which are reflex. The propagation of $\mathcal{W}_{P}^{*}(t,\sigma)$ results in:

- O(n) split/edge events,
- \$\mathcal{O}(nr)\$ switch events, and
- \$\mathcal{O}(r^2)\$ start events.
- Computing $\mathcal{W}_P^*(t,\sigma)$ at t = 0 takes $\mathcal{O}(n \log n + nr)$ time.
- Handling one (reflex preserving) edge event takes $O(n + r + r \log n)$ time:
 - Updating $\mathcal{A}(P)$: $\mathcal{O}(r)$ time.
 - Adding/removing a segment of the wavefront: O(n) time.
 - The new segment in $\mathcal{A}(P)$ may invalidate $\mathcal{O}(r)$ events in \mathcal{Q} : $\mathcal{O}(r \log n)$.

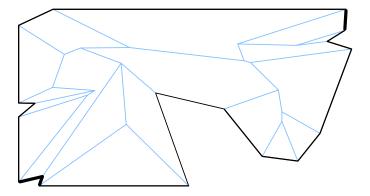
- Handling one start event takes $O(r + \log n)$ time:
 - $\mathcal{O}(r)$ time to find the next intersection in $\mathcal{A}(P)$.
 - $\mathcal{O}(\log n)$ time to add the event to \mathcal{Q} .

Overall Complexity

	time	space
classical	$\mathcal{O}(n^2 + r^3 + nr \log n)$	$\mathcal{O}(n)$
trade-off ⁵	$\mathcal{O}(n^2 + r^3/k + nr\log n)$	$\mathcal{O}(n+kr)$

⁵with a fixed k s.t. $1 \le k \le r$.

Q & A



Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

References I

- O. Aichholzer, F. Aurenhammer, D. Alberts, and B. Gärtner. A Novel Type of Skeleton for Polygons. Journal of Universal Computer Science, 1(12):752–761, 1995.
- [2] S.-W. Cheng, L. Mencel, and A. Vigneron. A Faster Algorithm for Computing Straight Skeletons. 12(3):44:1–44:21, Apr. 2016.
- [3] D. Eppstein and J. Erickson. Raising Roofs, Crashing Cycles, and Playing Pool: Applications of a Data Structure for Finding Pairwise Interactions. *Discrete & Computational Geometry*, 22(4):569–592, 1999.
- [4] S. Huber and M. Held. A Fast Straight-Skeleton Algorithm Based on Generalized Motorcycle Graphs. International Journal of Computational Geometry, 22(5):471–498, 2012.
- [5] P. Palfrader. Phd Defense.
- [6] A. Vigneron and L. Yan. A Faster Algorithm for Computing Motorcycle Graphs. Discrete & Computational Geometry, 52(3):492–514, Oct. 2014.