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We consider multiplicatively weighted points, axis-aligned rectangular boxes and axis-
aligned straight-line segments in the plane as input sites and study Voronoi diagrams

of these sites in the maximum norm. For n weighted input sites we establish a tight

Θ(n2) worst-case bound on the combinatorial complexity of their Voronoi diagram and
introduce an incremental algorithm that allows its computation in O(n2 logn) time. Our

approach also yields a truly simple O(n logn) algorithm for solving the one-dimensional
version of this problem, where all weighted sites lie on a line.

Keywords: Weighted voronoi diagrams; maximum norm; line segments; rectangles;

incremental construction.

1. Introduction

1.1. Related work

In 1984, Aurenhammer and Edelsbrunner4 introduced an O(n2) time algorithm to

compute the multiplicatively weighted Voronoi diagram of n weighted point sites

in the standard Euclidean metric. Their algorithm is optimal in the worst case

since this diagram may consist of Θ(n2) faces, edges and nodes. Both their analysis

of the combinatorial complexity as well as their algorithm rely on the fact that

the bisector between a pair of weighted points is given by a circle. Aurenhammer

and Edelsbrunner define spheres on these bisector circles and convert them into

half-planes using a spherical inversion. Later Aurenhammer uses divide&conquer
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to obtain an O(n log n) time and O(n) space algorithm for the one-dimensional

weighted Voronoi diagram, where all weighted input points lie on a line.3

Papadopoulou and Lee6 formally study Voronoi diagrams of line segments in

the maximum norm (L∞-metric). They apply a sweep-line algorithm to compute

such a diagram in O(n log n) time for n line segments. Vyatkina and Barequet9

show that multiplicatively weighted Voronoi diagrams (in the Euclidean metric) of

n lines have a combinatorial complexity of O(n2) and can be computed by means

of wavefront propagation in O(n2 log n) time. Lower-envelope computations can

be used to compute (weighted) Voronoi diagrams in O(n2+ε) time, where ε >

0.1,8 Papadopoulou and Xu7 show how to compute the Voronoi diagram of point

sites under the L∞ Hausdorff distance. Their two-pass plane sweep approach takes

O(n log n) time and linear space if a specific crossing number is at most linear. In

prior work Papadopoulou5 shows that this diagram is equivalent to the additively

weighted Voronoi diagram in the maximum norm.

1.2. Our contribution

We pick up the lead and investigate multiplicatively weighted Voronoi diagrams

in the maximum norm. As input sites we consider weighted points and weighted

axis-aligned rectangular boxes and straight-line segments. Similar to the Euclidean

setting, the multiplicatively weighted Voronoi diagram subdivides the plane into

regions such that every point in the interior of a region is closest to exactly one site.

In Figs. 1(a) and 1(b), we illustrate the diagrams in both the L2- and L∞-norm

over the same set of points and weights.

In Sec. 3, we establish a tight Θ(n2) bound on the combinatorial complexity of

the multiplicatively weighted Voronoi diagram of a set of n sites in the maximum

norm. This worst-case bound is the same in the Euclidean metric and is shown

(5)

(1) (1) (1)

(3) (3.5)

(5)

(1) (1) (1)

(3) (3.5)

(a) (b)

Fig. 1. Multiplicatively weighted Voronoi diagram of six point sites, associated weight in brackets;
(a) in L2-norm; (b) in L∞-norm.

In
t. 

J.
 C

om
pu

t. 
G

eo
m

. A
pp

l. 
20

19
.2

9:
23

9-
25

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

A
L

Z
B

U
R

G
 U

N
IV

E
R

SI
T

Y
 o

n 
10

/2
8/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



October 23, 2019 9:16 110-IJCGA 1950007

Weighted Voronoi Diagrams in the Maximum Norm 241

by Aurenhammer and Edelsbrunner.4 We explain how to apply a simple incremen-

tal construction approach that allows to compute the actual Voronoi diagram in

O(n2 log n) time and O(n2) space in Sec. 4.

As a by-product of our investigation we obtain an O(n log n) algorithm for com-

puting weighted Voronoi diagrams in one dimensions, where all input points lie on

a line; cf. Sec. 6. While we cannot beat this worst-case optimal time bound, our

algorithm is considerably simpler than Aurenhammer’s divide&conquer solution.3

2. Basics and Characterization

We start with formulating the multiplicatively weighted Voronoi diagram in the L∞
norm. Let S := {s1, s2, . . . , sn} denote a finite set of n distinct points, axis-aligned

rectangular boxes and axis-aligned straight-line segments, so-called sites, in R2. No

two sites of S are allowed to share a common point. Since a box is regarded as a

(compact) two-dimensional subset of the plane this assumption also rules out one

site of S being contained inside another box of S. A weight function w : S → R+

assigns a strictly positive weight w(s) to every site s ∈ S. For reasons that will

soon become apparent we start with assuming that all weights are distinct. (We

will waive this assumption in Sec. 5.)

The weighted L∞-distance dw(p, s) from an arbitrary point p in R2 to a site

s ∈ S is given by the standard L∞-distance d(p, s) from p to s divided by the

weight of s. If p belongs to s, where s is a line segment or a box, then dw(p, s) := 0.

Otherwise,

dw(p, s) :=
1

w(s)
·min
q∈s

d(p, q). (1)

Ofcourse, if s is a point site then dw(p, s) results in the weighted point-to-point

L∞-distance.

The multiplicatively weighted Voronoi Diagram V∞(S) of S is a subdivision of

the plane formed by regions, edges and nodes. For si in S, the (weighted) Voronoi

region R(si) of si is the set of all points of the plane that are not closer to any other

site sj in S, that is

R(si) := {p ∈ R2 : dw(p, si) ≤ dw(p, sj) for all sj ∈ S with i 6= j}.

As usual, the multiplicatively weighted Voronoi diagram V∞(S) of S is defined as

V∞(S) :=
⋃
s∈S

∂R(s),

where ∂R(s) denotes the boundary of R(s). A face of V∞(S) is one connected

component of such a region. Note that a weighted Voronoi region may consist of

many connected components; see Sec. 3. Thus, several faces may belong to one

Voronoi region.

The bisector b(si, sj) for the two distinct sites si, sj of S models the set of

points of the plane that are at the same weighted distance from si and sj . Hence, a
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non-empty intersection of two Voronoi regions is a subset of the bisector of the two

defining sites. Following common terminology, a connected component of such an

intersection is called a (Voronoi) edge of V∞(S). An endpoint of an edge is called a

(Voronoi) node.

The set of points in the plane that are at weighted distance t from a site s in

S is given by the boundary of the Minkowski sum of s with an axis-aligned square

with side length 2t · w(s) that is centered at the origin. For i ∈ {1, 2, . . . , n} and

si ∈ S, we denote this axis-aligned rectangle by i(t). (We are only interested in

the boundary of the rectangle rather than in the region bounded by it.) Ofcourse,

the rectangle i(t) is an axis-aligned square whose center coincides with si if si is

a point site. Let U(t) := { 1(t), . . . , n(t)} denote the set of these n rectangles for

t > 0. We find it convenient to regard U(t) as a function of either time or distance

since at time t every point p on i(t) is at L∞-distance t · w(si) from si, i.e., at

weighted distance t.

We start with investigating the bisector of two distinct sites si and sj in S.

Consider a distance t > 0 that is small enough such that neither i(t) intersects

j(t) nor one of them is contained inside the other. Now let t increase. A non-empty

intersection of the two rectangles i(t) and j(t) comprises all points that are at

weighted distance t from both si and sj . The first intersection of the two expanding

rectangles corresponds to a single point or a line segment. When expanding the

rectangles further the bisector between si and sj is traced out along the intersection

i(t)∩ j(t). Hence, by taking the union of all points of intersection between i(t)

and j(t), for all t > 0, we obtain the bisector of si and sj . In Fig. 2, we show

such an expansion scenario for the squares of two point sites, and Fig. 3(a) shows

the bisector between two box sites. We note that i(t) will be fully contained in

j(t) for all values of t that are large enough if w(si) < w(sj). Hence, the bisector

between si and sj is a closed curve if w(si) 6= w(sj).

Recall that in the standard L∞ setting a bisector of two unweighted point sites

need not be a curve but may be a two-dimensional subset of the plane: Consider two

point sites si and sj that have the same y-coordinate and the same weight. At time

t their respective squares i(t) and j(t) meet for the first time, i.e., two vertical

(2)si

sj
(5)

si

sj

si

sj

(a) (b) (c)

Fig. 2. (Color online) Sample expanding squares for two weighted point sites si, sj ; the radii of
the disks that mark the sites are chosen in relation to their weights (in parentheses). Their bisector
is shown in orange.
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si

sj(3)

(1) si

sj(3)

(1)

∇t

(a) (b)

Fig. 3. (Color online) (a) Bisector (orange) between two boxes whose site weights are noted in

parentheses. (b) The top wedge ∇t traced out by the top side of the expanding rectangle of si.

sides (left and right, resp.) overlap. (Ofcourse, that time t equals half the distance

of the x-coordinates of si and sj .) Due to equal weight and equal y-coordinate the

top sides of the rectangles are collinear, as are the bottom sides. Therefore, at time

t′ ≥ t these sides overlap partially, and this overlap expands as t′ increases. Hence,

the bisector of these two sites resembles an hourglass, cf. Fig. 5(a).

We now argue that this cannot happen if all weights are distinct. Assume that

w(si) < w(sj). The intersection of i(t) and j(t) can form a line segment if and

only if two sides of the two rectangles lie on the same supporting line. The simple

but crucial insight is that this can happen at most once for every pair of parallel

sides: Even if two sides of i and j propagate in the same direction then the

distinct weights result in distinct speeds and ensure that the moving copies of the

sides are contained in the same line at most once.

Hence, except for a constant number of values of t, the intersection of i(t) and

j(t) is formed by at most two discrete points. Standard analysis shows that all

points of intersection of a vertical and a horizontal line that propagate at constant

speeds lie on a line. Thus, if two non-parallel sides of i(t) and j(t) intersect

then their point of intersection traces out a line segment.

Let us now analyze the bisector between two box sites si and sj in more detail.

Again assume that w(si) < w(sj). Every side of the expanding rectangle i(t)

moves within precisely one face of the exterior straight skeleton of the box. If si is

a point site (rather than a box) then every such face is formed by a right-angled

wedge whose two bounding rays originate at the site. For convenience we refer to

such a face as wedge also in the case of rectangular sites. Let ∇t,∇b and ∇l,∇r
be the top (bottom, resp.) and left (right, resp.) wedge; see Fig. 3(b). These four

wedges cover all of the exterior of si.

Now assume that the top side of sj lies above the top side of si. Ofcourse, both

sides move upwards as t increases. However, our assumption on the weights implies

that the top side of i(t) cannot catch up with the top side of j(t). A similar

argument holds if the right side of j(t) lies to the right of i(t), etc. We call

this fact the no-piercing property: The expanding rectangle of a lower-weighted site

cannot pierce through an expanding rectangle of a higher-weighted site.
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Lemma 1. Let si, sj be two sites in S and let w(si) < w(sj). Then at least one

side of j(t) is never intersected by any side of i(t), for all t > 0.

This no-piercing property implies that every side of i(t) can be intersected by

at most three sides of j(t).

Lemma 2. Let si, sj be two sites in S and let w(si) < w(sj). Then the bisector

between si and sj restricted to ∇t is formed by up to three straight-line segments.

If there are three line segments then the middle segment is parallel to the top side

of si.

Similar statements hold for ∇b,∇l,∇r. This lemma implies that there are at

most four times at which the intersection of i(t) and j(t) forms a line segment.

A more refined analysis of the expansion of i and j shows that at most three of

all pairs of moving parallel sides can actually overlap. E.g., in Fig. 2(c) we see that

the bisector contains three axis-aligned segments. Clearly an overlap between the

top side of i(t) and the bottom side of j(t) and an overlap between the right

side of i(t) and the left side of j(t) is not possible unless they occur at the same

time and degenerate to a corner-corner contact. Furthermore, a bisector polygon

encloses the site with smaller weight. We call the vertices of this bisector polygon

Voronoi joints. It is easy to see that all interior angles of a bisector polygon are less

than 3π/4. This implies that the bisector polygon between si and sj restricted to ∇t
is a polygonal chain that is monotone with respect to the x-axis.

Lemma 3. Let si, sj be two sites in S and let w(si) < w(sj). Then the bisector

between si and sj is a polygon with a constant number of edges and joints. It consists

of two polygonal chains which are strictly monotone with respect to the x-axis and

two polygonal chains which are strictly monotone with respect to the y-axis. Each

polygonal chain lies within exactly one of the four wedges ∇t,∇b,∇l,∇r and consists

of at most three edges. The two chains in ∇t,∇b each contain at most one horizontal

edge, while the chains in ∇l,∇r each contain at most one vertical edge.

Since V∞(S) is formed by portions of bisectors, V∞(S) is a planar straight-line

graph. It contains Voronoi joints as vertices of degree two, and Voronoi nodes as

vertices of degree three or higher. We note that distinct weights prevent V∞(S)

from containing rays, i.e., unbounded edges: Let sj be the site of S with maximum

weight. Then there exists a time tj such that j(t) will contain the scaled rectangles

of all other sites for all t > tj . Thus, the Voronoi region of sj is the only unbounded

region.

From now on we assume that the sites s1, . . . , sn of S are indexed according to

decreasing weight. That is, w(si) > w(si+1), for 1 ≤ i < n. Let Si := {s1, . . . , si}
denote the i highest-weighted sites of S, for 1 ≤ i ≤ n. Lemma 3 implies that

the bisector between si and any other sj in Si is a simple polygon that consists

of four monotone polygonal chains, with each chain within precisely one of the
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four wedges. And, of course, each bisector polygon contains si within its inte-

rior. Since the Voronoi region R(si) of si relative to the other sites of Si is given

by the intersection of these i − 1 polygonal areas we get a fairly simple way to

obtain R(si).

Lemma 4. Let 1 ≤ i ≤ n. For ∇ ∈ {∇t,∇b,∇l,∇r}, the boundary of the Voronoi

region R(si) of si relative to Si restricted to ∇ can be obtained by a lower-envelope-

like computation that involves i−1 polygonal chains which all are strictly monotone

relative to the same coordinate axis and which all have their end-points on the rays

bounding ∇.

3. Combinatorial Complexity

Aurenhammer and Edelsbrunner4 show that a multiplicatively weighted Voronoi

diagram of points in the Euclidean metric can have Ω(n2) faces, edges, and nodes.

The set-up of their example can be adapted easily to our setting, see Fig. 4: We

place bn/2c point sites with large (identical) weight at close range on a line with

a slope of one. The bisectors of these sites are straight lines. Hence, these point

sites define bn/2c faces which form (narrow) slabs. The remaining dn/2e point sites

are placed along the middle bisector, and their (relatively) small weights are chosen

large enough such that their Voronoi regions overlap with all slabs. Hence, every slab

is partitioned into roughly n/2 faces, and we get a total of Ω(n2) faces for V∞(S).

Ofcourse, we could modify the large weights of the first bn/2c point sites such that

all weights are very similar but distinct. It is easy to see that the key combinatorial

properties of our set-up will remain unchanged providing that these sites are chosen

close enough together and that their weights are chosen large enough relative to the

weights of the other sites. Similarly, every point site could be replaced by a small

box or straight-line segment.

We now establish that O(n2) is also a tight upper bound on the combinatorial

complexity of V∞(S). Lemma 4 tells us that the boundary of R(si) consists of

four monotone polygonal chains which can be obtained by running a lower-envelope

computation within each of the four wedges. In particular, Lemma 2 tells us that

the bisector between si and sj , for 1 ≤ j < i, restricted to ∇t consists of at

most one horizontal and at most two non-horizontal edges. We interpret a non-

horizontal bisector edge that has an end-point on one of the rays of∇t as unbounded

(5)

(5)

(5)

(5)

(2)

(5)

(1) (1)(2)

x
y

Fig. 4. (Color online) V∞(S) of eight point sites, weights denoted by the numbers in brackets.
Note that the figure is rotated to save space; see the coordinate system (blue).
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and replace it by a ray that extends to the exterior of ∇t. (Replacing every non-

horizontal edge by a ray will allow us a simplified analysis of the combinatorial

complexity.) Hence, the portion of the bisector between si and sj restricted to ∇t
is a subset of at most two rays and at most one horizontal edge. Summing over all

i− 1 sites of Si gives at most 2(i− 1) many rays and at most i− 1 many horizontal

edges whose lower envelope L contains the bisector between si and sj restricted

to ∇t.
Let Lr be the lower envelope of all 2(i− 1) many rays, and let Lh be the lower

envelope of all horizontal edges. Then L is given by the lower envelope of Lr and

Lh. Ofcourse, both L and Lr are x-monotone polygonal chains. A straightforward

charging argument used in a left-to-right scan of the chains allows to establish that

the lower envelope of two (infinite) x-monotone polygonal chains with m1 and m2

vertices has at most 2(m1 +m2) vertices.

It is also easy to see that the lower envelope of all at most i− 1 rightwards rays

has at most 2(i − 1) many (finite) vertices. Hence, Lr contains at most 8(i − 1)

vertices. (This bound also follows from a more general result by Alevizos et al.2

on the complexity of the boundary of the external region in an arrangement of

rays.) Another straightforward charging argument yields that Lh has at most 2i

vertices. We conclude that L has at most 2 · (8 + 2) · i vertices, thus establishing

the following lemma. (We do not suggest that the constants involved are smallest

possible, though.)

Lemma 5. The Voronoi region R(si) of the site si relative to Si consists of at

most 80i edges.

The combinatorial complexity |V∞(Si)| of V∞(Si) depends on |V∞(Si−1)| plus

the combinatorial complexity of R(si). After all, the forming of V∞(Si) from

V∞(Si−1) by inserting R(si) causes the generation of at most one new Voronoi edge

per joint of R(si), while some Voronoi edges/nodes of V∞(Si−1) in the interior of

R(si) get removed completely. This observation implies that V∞(Si) has at most

2 · 80 · i more Voronoi edges than V∞(Si−1). Hence,

|V∞(S)| ≤
∑

1≤i≤n

160 · i = 80 · n · (n+ 1),

thus settling Theorem 1.

Theorem 1. The multiplicatively weighted Voronoi diagram of a set of n weighted

sites in the L∞ norm consists of Θ(n2) faces, edges, joints and nodes in the worst

case.

4. Algorithm

We are now ready to provide details of the incremental construction algorithm to

compute V∞(S) which we hinted at in the previous section. Again, let the sites

s1, . . . , sn of S be indexed according to decreasing weight, and let Si := {s1, . . . , si}

In
t. 

J.
 C

om
pu

t. 
G

eo
m

. A
pp

l. 
20

19
.2

9:
23

9-
25

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

A
L

Z
B

U
R

G
 U

N
IV

E
R

SI
T

Y
 o

n 
10

/2
8/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



October 23, 2019 9:16 110-IJCGA 1950007

Weighted Voronoi Diagrams in the Maximum Norm 247

for 1 ≤ i ≤ n. We proceed with showing inductively how the Voronoi region R(si)

of si within Si can be computed and inserted into V∞(Si−1) to obtain V∞(Si).

There are several straightforward ways to compute the four lower envelopes

required according to Lemma 4 in O(i log i) time. We employ a divide&conquer

approach: We split Si−1 into two subsets S′i−1 and S′′i−1 of roughly equal size and

recursively compute the corresponding envelopes for the bisectors between si and

the sites of S′i−1 resp. S′′i−1. Theorem 5 tells us that each resulting polygonal chain

has O(i/2) = O(i) vertices and edges. The actual merge step is carried out similar

to the merge step of merge sort and takes time linear in the number of vertices of

the two chains. Hence, R(si) is computed in O(i log i) time.

The second step is to embed R(si) into V∞(Si−1) in order to obtain V∞(Si).

A node v of R(si) is defined by exactly three sites si, sn, sm. Therefore, we have to

modify the bisector between sn and sm. We know that the bisector between two sites

consists of a constant number of edges. Unfortunately, in V∞(Si−1) a single bisector

may contribute O(i) many Voronoi edges. Therefore, we set up a search structure

that enables us to find a specific Voronoi edge of a bisector quickly. Suppose that an

edge of the bisector b(si, sj), with 1 ≤ j < i, belongs to the boundary ofR(si). Then

we maintain such a search structure for the supporting line of that edge and store

it with si. A standard self-balancing binary search tree, e.g., an AVL tree, is good

enough for our purposes. It guarantees O(log n) processing time for all operations

required. Theorem 5 tell us that we store O(i) many search structures with si. The

total memory required for all search structures is bounded by the number of edges

of the Voronoi diagram, i.e., by O(n2).

To embed R(si) we iterate over its nodes, i.e., those vertices v of R(si) which

have equal weighted distance to si and two other sites sm and sn. We query our

search structure for b(sm, sn) and find the Voronoi edge e of V∞(Si−1) that contains

v. We split e at v and update the search structure. Note that joints of R(si) can

be added without further attention. Hence we can embed R(si) into V∞(Si−1) in

O(i log i) time. If R(si) does not contain nodes (but only joints) then it is formed

by just one bisector b(si, sj) and lies completely in the interior of a face of R(sj).

In this case it does not intersect an edge of V∞(Si−1) but forms a disconnected

face.

The final step is to delete the edges of V∞(Si−1) that are contained in the interior

of R(si). As R(si) is now embedded in the diagram we apply a breath-first search

originating from the nodes of R(si) towards the interior of the region. This search

identifies all ki edges inside of R(si). Removing these ki edges takes O(ki log n) time

due to the cost of maintaining the search structures. Note that a newly added region

R(si) cannot contain a disconnected face of V∞(Si−1) completely. (Otherwise, one

site would have no Voronoi region!)

We claim that K :=
∑

1<i≤n ki = O(n2). We know that R(si) has O(i) edges

and nodes, cf. Theorem 5. Furthermore, we know that most O(i) edges are added

due to the insertion of R(si). Trivially, the number ki of edges removed is bound
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by the number of edges ever created. Hence,
∑

1<i≤n ki ≤
∑

1<i≤nO(i) = O(n2)

holds and settles our claim.

We are now ready to summarize the complexities of the steps of the algorithm:

Computing the polygon R(si) and inserting it into V∞(Si−1) each take O(i log n)

time. Thus, creating and inserting all n Voronoi regions requires O(n2 log n) time.

Since K = O(n2) the overall time required by the removal of Voronoi edges is in

O(n2 log n), thus establishing Theorem 2.

Theorem 2. The multiplicatively-weighted Voronoi diagram V∞(S) of a set S of n

weighted sites in the L∞ norm can be computed incrementally in O(n2 log n) time

and O(n2) space.

Unfortunately, there is no hope to tune this approach for achieving output sen-

sitivity: Suppose that Fig. 4 shows the intermediate Voronoi diagram after the

insertion of n/3 point sites of high weight and n/3 point sites of low weight. Then we

can cover the O(n2) slab-like faces by inserting the remaining n/3 (point) sites, with

the Voronoi region of one site covering O(n) slab-like faces. Thus, the final Voronoi

diagram might be of linear combinatorial complexity even if intermediate diagrams

are of quadratic complexity.

5. Equal Weights

We know that equal weights can result in two-dimensional bisectors, as explained

in Sec. 2. Papadopoulou and Lee6 show this in their work and decide to define the

bisector in such a case as follows: They use the left lower boundary ray on the left

lower end of the initial “bisector” and the right upper boundary ray on the right

upper end, cf. Fig. 5. We adopt their convention in the case of point sites with

identical weights and common x- or y-coordinates.

Similar “two dimensional” bisectors can occur for rectangular boxes or straight-

line segments if the weights are identical. For instance, we could replace the right

point site in Fig. 5(a) by a horizontal line segment and get a similar bisector.

Fortunately, Papadopoulou and Lee’s convention remains applicable.

We now revisit our complexity claims. The no-piercing property, Lemma 1, holds

for equal weights as well, since the equal weights imply equal speeds of the respective

(a) (b)

Fig. 5. (Color online) (a), (b) A “two dimensional” bisector area (gray) between two point sites,
and the resulting bisector adopted by convention (orange).
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expanding rectangles. Lemma 2 holds for equal weights as well, as do Lemma 3–

Theorem 5 and Theorem 2. Hence the combinatorial complexity of V∞(S) stays

in Θ(n2). It is easy to realize that our algorithms remains applicable, too. Note,

though, that V∞(S) has a tight linear bound on its combinatorial complexity if

absolutely all weights are identical.6

6. One Dimensional Weighted Voronoi Diagram

Consider a set S of n point sites in R where every site s has a strictly positive weight

σ(s) ∈ R+. Aurenhammer3 shows that V(S) has a linear combinatorial complexity

by modeling it as the lower envelope of wedges in R2. The actual Voronoi diagram

is computed in O(n log n) time by means of divide&conquer and a plane sweep.

We now apply our incremental construction algorithm to compute V(S). Again,

let Si := {s1, . . . , si} be the subset of the i highest-weighted sites of S and let V(Si)

be their Voronoi diagram. We know that R(si) is a single interval because R(si) is

formed by the intersection of i− 1 intervals which all contain si.

We maintain the sequence of interval boundaries that correspond to the Voronoi

diagram under construction in a balanced binary search tree T that supports search,

insertion and deletion in logarithmic time. To compute R(si) we use T to determine

the interval that contains si. Then we scan leftwards and rightwards from si. If an

interval boundary encountered during this scan is closer to si than to the two sites

of Si−1 which defined it then it is deleted from T . Eventually the left and right

boundaries of R(si) are inserted into T . Since R(si) adds exactly one interval and

splits at most one existing interval into two sub-intervals we know that |V(Si)| =

O(i). Trivially, we can only remove intervals which were inserted previously. Hence

the overall number of intervals during the entire incremental construction is bound

by O(n), which settles the following theorem.

Theorem 3. Maintaining a balanced binary search tree suffices to compute the

multiplicatively weighted Voronoi diagram of n weighted point sites in R by means

of incremental construction in optimal O(n log n) time and O(n) space.

7. Extensions

The assumption that input line segments of S may not share common end-points can

be waived without causing our approach to collapse. Hence, our approach can also

compute multiplicatively weighted Voronoi diagrams of planar orthogonal straight-

line graphs (where all edges are parallel to coordinate axes). Similarly, we may allow

input rectangles to share corners. Note, though, that the Voronoi region of a point

site will be empty if it coincides with a corner of a rectangle or end-point of a

straight-line segment which has a higher weight.

It is also easy to incorporate additive weights because this merely means replac-

ing the input sites by properly enlarged rectangles: If site si has additive weight

ai then we replace it by the Minkowski sum of si with an axis-aligned square with

In
t. 

J.
 C

om
pu

t. 
G

eo
m

. A
pp

l. 
20

19
.2

9:
23

9-
25

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

A
L

Z
B

U
R

G
 U

N
IV

E
R

SI
T

Y
 o

n 
10

/2
8/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



October 23, 2019 9:16 110-IJCGA 1950007

250 G. Eder & M. Held

side-length 2ai that is centered at the origin. Our approach remains applicable as

long as no pair of the resulting rectangular boxes intersect in their relative interiors.

As a matter of principle, our approach could also be generalized to rectangular

boxes and straight-line segments that are not required to be axis-parallel. In this

case the expanding offset structures become octagons which have four sides that are

parallel to the coordinate axes. This results in several technical issues that require a

careful re-phrasing of our lemmas. But even in this general case the bisector between

two sites is a polygon of constant complexity, and the weighted Voronoi diagram

could be constructed by our incremental algorithm. However, we have not been able

to prove that the complexity of the Voronoi cell of si relative to Si remains linear in i.

Rather, we can only prove a worst-case complexity of O(i ·α(i)), where α(·) denotes

the inverse Ackerman function. As a consequence, an additional multiplicative factor

of α(n) shows up both in our worst-case bound on the combinatorial complexity of

the Voronoi diagram of n sites as well as in the time complexity of our algorithm

if we allow the sites to be oriented arbitrarily. We leave it as a problem for future

work to either get rid of this multiplicative factor or to establish that Θ(n2 · α(n))

is indeed the worst-case combinatorial complexity of the Voronoi diagram in this

general setting.
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