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Voronoi Diagram V(S)
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Definitionr Given a set S of n sites in R2.r Every site s of S defines a region
R(s) that contains all points of R2

closer to s than to any other site.r The Voronoi diagram V(S) is the union
of the boundaries of all n regions.
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Multiplicatively Weighted Voronoi Diagrams

Definitionr Let S := {s1, . . . , sn} a set of n weighted sites in R2 and let w : S → R+ a weight
function.r The region R(s) contains all points of R2 closer to s than to any other site of S
measured by dw (p, s) := d(p,s)/w(s), where d(p, s) provides the distance in the
respective metric.r V(S) :=

⋃
0<i≤n ∂R(si ), where ∂ denotes the boundary.
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Bisectors

Two weighted sites in the plane and their bisector in the L2-metric (left) and the
L∞-metric (right).
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Two weighted sites in the plane and their bisector in the L∞-metric .

(1)

(2)

V∞(S) forms a PSLG∞.
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Bisectors

Two weighted sites in the plane and their bisector in the L∞-metric .

V∞(S) forms a PSLG∞.

Embedding an axis aligned pyramid on each site. The lower envelope of these
pyramids, projected to the plane, forms the bisector of the sites.



5/10

Combinatorial Complexity of V∞(S)

Ω(n2) is established by worst case example.
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Combinatorial Complexity of V∞(S)

Place an upside-down pyramid p on every site s. The dihedral angle of p is in respect
to w(s).

(5)

(1) (1) (1)

(3) (3.5)
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Combinatorial Complexity of V∞(S)

Place an upside-down pyramid p on every site s. The dihedral angle of p is in respect
to w(s). Mapping V∞(S) onto the set of pyramids. The projection lies on the lower
envelop of the pyramids.
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(3) (3.5)

x/y

x/z

Let Sk := (s1, . . . , sk ) be the k sites of S ordered by weight such that
w(si ) > w(si+1), for 0 < i < k ≤ n.
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Combinatorial Complexity of V∞(S)

(5)

(2)

(1)

(1)

(2)

Let Sk := (s1, . . . , sk ) be the k sites of S ordered by weight such that
w(si ) > w(si+1), for 0 < i < k ≤ n.

The intersection of a plane (red) with the lower envelope is of size O(n).

V∞(S) has at most O(n2) faces, edges, and vertices

V∞(S) has a Θ(n2) combinatorial complexity in the worst case.
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R(sk) is Star-Shaped

(2)

(4)

(5)

(3)

sk

We construct R(sk ) for site sk of Skr Bisector between sites sk , si forms a
star-shaped polygon where the site with
smaller weight resides in the kernel.r Intersecting the closure of the bisectors
of sk with s1, . . . , sk−1 forms R(sk ) in
respect to Sk .rR(sk ) forms a star-shaped polygon
with sk in its kernel.rR(sk ) is linear in size.
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Incremental Construction

Algorithmr Compute R(sk ).r Compose V∞(Sk ) from R(sk ) and V∞(Sk−1).r Embed R(sk ) into V∞(Sk−1).r Remove/shorten edges of V∞(Sk−1) inside R(sk )
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Summary and Q & A

(5)

(1) (1) (1)

(3) (3.5)

Summaryr Combinatorial complexity in the worst case Θ(n2).r Incremental construction in O(n2 log n) time and O(n2) space.

Questions?
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