
EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Bisector Graphs for Min-/Max-Volume Roofs over Simple Polygons

Günther Eder∗ Martin Held∗ Peter Palfrader∗

Abstract

Piecewise-linear terrains (“roofs”) over simple poly-
gons were studied by Aichholzer et al. (1995) in their
work on straight skeletons of polygons. We show how
to construct a roof over a simple polygon that has
minimum (or maximum) volume among all roofs that
drain water. Such a maximum-volume (minimum-
volume) roof can have quadratic (maybe cubic, resp.)
number of facets. Our algorithm for computing such
a roof extends the standard wavefront propagation
known from the theory of straight skeletons by two
additional events. Both the minimum-volume and the
maximum-volume roof of a simple polygon with n ver-
tices can be computed in O(n3 log n) time.

1 Introduction

1.1 Motivation and Prior Work

In 1995 Aichholzer et al. [3] introduced straight skele-
tons of simple polygons. Their work also highlights
the intimate connection between straight skeletons
— as a special form of a bisector graph — of poly-
gons in the two-dimensional plane and a 3D structure
called “roof”. The bisector graph and the roof model
are used to demonstrate straight skeleton properties.
They mention that its roof volume is neither maxi-
mized nor minimized. Their algorithm uses a sweep-
plane approach to compute the straight skeleton of a
simple polygon in O(n2 log n) time. Aichholzer and
Aurenhammer [2] apply a wavefront propagation to
compute straight skeletons of general planar straight-
line graphs.

While every straight skeleton of a simple polygon
has its corresponding roof [3], it seems natural to
study also other types of roofs. Indeed, so-called “re-
alistic roofs” were introduced in recent work by sev-
eral authors [6, 1]. Their approach enumerates all
possible realistic roofs over a rectilinear polygon in
O(n5) time. A side result of their work is the compu-
tation of a realistic roof that has minimum height or
minimum volume (under the roof).

We pick up this lead and generalize realistic roofs
to “natural roofs”: Roughly, we still require a natu-
ral roof to drain water but wave the restriction that
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every facet of the roof has to be connected to its defin-
ing boundary edge. (See the gray triangular area in
Fig. 1b.) We show how to employ a wavefront prop-
agation to compute a minimum-volume (maximum-
volume) roof of a simple polygon with n vertices in
O(n3 log n) time.

1.2 Basics

Throughout this paper we let P denote a simple poly-
gon in the xy-plane, Π0, of R3. The interior side of an
edge e of P is the half-plane (within Π0) induced by
its supporting line `(e) which locally (close to e) over-
laps with the interior of P . We associate a half-plane
Π(e) with e in the following way: (i) The intersection
of Π(e) with Π0 is given by `(e), (ii) Π(e) lies within
the half-space z ≥ 0 of R3, (iii) the normal projection
of Π(e) onto Π0 coincides with the interior side of e;
i.e., Π(e) is inclined towards the interior of P , and
(iv) Π(e) forms a 45◦ angle with Π0.

Consider two different edges e1, e2 of P . The (an-
gular) bisector of e1, e2 is the set of all points within
the intersection of the interior sides of e1 and e2 that
are equidistant from `(e1) and `(e2).

For the sake of (mostly descriptional) simplicity we
assume that P is in general position: (i) No two edges
of P are parallel to each other, and (ii) not more than
three bisectors of edges of P meet in one point. Under
this assumption, the bisector of two edges e1, e2 of P
is a ray that starts at the point of intersection `(e1)∩
`(e2) and leads into the common interior of e1 and e2.

Definition 1 (Bisector Graph [3]) A connected
planar straight-line graph is a bisector graph, B(P ),
of P if (i), all its edges are portions of bisectors of
edges of P , (ii) it has no degree-two node, and (iii)
there is a bijection between its degree-one nodes and
the vertices of P .

The straight skeleton of P is known to be one spe-
cific bisector graph of P [3]; cf. Fig. 1a and 1b. The
edges of a bisector graph are called B-arcs, and com-
mon end-points of B-arcs are called B-nodes. By let-
ting a B-arc of B(P ) inherit the orientation of its sup-
porting bisector ray we impose an orientation onto
every B-arc, thus turning a bisector graph into a di-
rected bisector graph. Naturally, B-nodes in a directed
bisector graph have an in-degree and out-degree.
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Figure 1: In (a), we see the straight skeleton of a simple polygon P , in (b) we see another bisector graph of P .
In (c), we see a create event while in (d), due to an internal angle greater than π (red), no create event is given.
In (e), we see how a create event modifies the wavefront polygon.

Definition 2 (Roof Model [3]) A roof for P ,
R(P ), is a terrain over P , i.e., the graph of a
piecewise-linear continuous function over P , such
that (i) every facet of R(P ) is a maximal connected
subset of a half-plane Π(e) of some edge e of P , and
(ii) the intersection of R(P ) with Π0 is equal to the
boundary of P .

Theorem 1 ([3]) Every roof for P corresponds to a
unique bisector graph of P , and vice versa.

We say that an edge e of P defines a facet f ofR(P )
if f is contained in Π(e). Note that some edge may
define multiple facets. As usual, a vertex v of P is
called reflex if the internal angle at v is greater than
π; convex otherwise. We call an edge e between two
neighboring facets of a roof valley or ridge depending
on whether e originates from a reflex or convex vertex.

Consider a facet f of a roof of P , and let f ′ be
its normal projection onto Π0. The truncated prism
defined by f is the solid bounded by f , f ′ and by
trapezoids between all pairs of corresponding edges of
f and f ′.

If all facets of the roof of a house have the so-called
gradient property then water is guaranteed to drain
and local minima are omitted [3]. Since the gradient
property requires every point on a facet of an edge
e to have a steepest path to e this is a sufficient but
not a necessary condition condition for water to drain.
We consider a less stringent requirement for a roof to
drain water and still omit local minima.

Definition 3 (Natural Gradient Property) Let
R(P ) be a roof for P . We say that a facet f of R(P )
has the natural gradient property (NGP) if, for every
point p ∈ f , there exists a path g(p) that (i) starts at
p, (ii) follows the steepest gradient, and (iii) reaches
the boundary of P .

Definition 4 (Natural Roof) A roof R(P ) for a
polygon P is called a natural roof for P if all its facets
have the natural gradient property.

Definition 5 (Min-/Max-Vol. Bisector Graph)
The maximum-volume bisector graph Bmax(P ) of a
polygon P is a bisector graph B(P ) whose associated

roof R(P ) is a natural roof that maximizes the vol-
ume over all possible natural roofs for P . Similarly
for the minimum-volume bisector graph Bmin(P ).

Definition 6 (Capped Roof) A capped (natural)
roof with height t ≥ 0 for a polygon P is the set
of all points of a (natural) roof R(P ) of P whose z-
coordinate does not exceed t.

2 Computing Min-/Max-Volume Roofs

Wavefront propagation [3, 2] is a well-known strat-
egy for computing straight skeletons. Roughly, the
wavefront propagation of P is a shrinking process in
which every input edge of P is offset inwards in a self-
parallel manner. Initially, the segments of the wave-
front correspond to the edges of the polygon. During
the wavefront propagation every wavefront segment
moves at unit speed towards the interior of P . It is
common to regard the wavefront as a function of time
t and to write WP (t) to denote the shrinking (wave-
front) polygons at time t. At time t every wavefront
segment is at normal distance t from its input edge.
As time progresses, the normal distance of each wave-
front segment to its defining input edge grows. The
points of intersection between consecutive wavefront
segments lie on the bisectors of their defining input
edges.

The wavefront vertices move along these bisectors
and trace out the desired bisector graph. In order
to maintain the planarity of WP (t), and to obtain a
straight skeleton, one has to handle two events: An
edge event occurs when a wavefront segment shrinks
to zero length. A split event occurs when a wavefront
vertex crashes into a wavefront edge which moves in
the opposite direction. A split event results in the
split of the wavefront polygon into two sub-polygons.

Observation 1 (Vertex Speed [4]) The speed of
a wavefront vertex v is given by s(v) = 1

sin(α/2) , where

α is the exterior angle of v.

We will also employ a wavefront propagation to
compute a min-/max-volume bisector graph. Our
process involves four event types: edge event, split
event, as in the straight skeleton computation [3], and
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Figure 2: In (a–b), we see create events and in (c–d) we see divide events; and (e) shows a bisector graph that
is not produced by our propagation scheme. Note that the (red) dashed line in (b) is part of the bisector bi,j on
which a stealth vertex moves.

divide event and create event as two new event types.
In addition, we employ so-called stealth vertices.

Definition 7 (Stealth Vertex) Let pi,j := `(ei) ∩
`(ej) be the point of intersection of the supporting
lines of two edges ei, ej of P . As the wavefront prop-
agates, pi,j moves inwards along the bisector bi,j of
ei, ej , at a speed given by Observation 1. At any time
when pi,j is not part of the wavefront polygon we call
it a stealth vertex of P . (See Fig. 2b.)

Definition 8 (Create Event) If (1) the supporting
line of a wavefront edge e becomes incident with a
reflex wavefront vertex v, where e is not incident at
v, or (2) a stealth vertex v becomes incident with a
wavefront edge e, and for either (1) or (2) the interior
angle between the two bisectors between e and the
two edges incident at v is smaller than π, then we call
it a create event. (See Fig. 1c and 1d.)

In the former case we insert an edge with zero
length between the two edges defining the reflex ver-
tex. The new edge belongs to the same input edge as
the one defining the supporting line; cf. Fig. 2a. In
the latter case we insert two edges with zero length
at the point of intersection, thus splitting the inter-
sected wavefront edge. The two edges associated with
the stealth vertex define the two new edges and the
stealth vertex becomes a wavefront vertex; cf. Fig. 2b.

We recall that the general position of P prohibits
parallel input segments. However, according to its
definition a create event adds parallel wavefront seg-
ments to a wavefront polygon. This is a necessary
condition for the divide event.

Definition 9 (Divide Event) When two or three
reflex wavefront vertices become incident and all in-
cident wavefront edges originate from three common
input edges we call it a divide event.

In the former case the two parallel edges (associated
with one input edge) join into one edge and the two
remaining edges become adjacent; cf. Fig. 2c. In the
latter case three parallel edge pairs become incident
and all edges change adjacencies to their neighbor; cf.
Fig. 2d.

We point out that the divide event is not a “vertex-
event” [5] in disguise where reflex wavefront vertices
become incident as well. Note that all events but
the create event are compulsory: Ignoring only one of
them during the wavefront propagation would result
in a self-intersecting wavefront. Only create events are
optional: Accepting or ignoring such an event gives us
the freedom to construct different roofs and, thus, to
influence the volume of the resulting roof.

Every event takes place at the intersection of three
bisectors and forms a B-node in the bisector graph.
Three B-arcs start or end at every B-node, except for
three cases: (i) at the vertices of P ; (ii) degree-six
nodes that occur in a divide event where three reflex
wavefront vertices become incident; cf. Fig. 2d; and
(iii) another degree-six node which is not listed as an
event; cf. Fig. 2e. However, in (i) no event takes place
and in (ii) the in-degrees and the out-degrees both
are three and the directions of the incident B-arcs
alternate when one moves around the node. Lastly,
(iii) is not relevant in our propagation schema as it
can be omitted due to the goal of min-/maximizing.

Besides these exceptions, no two B-arcs can lie on a
common bisector and intersect at a common B-node.
In the full paper we list all combinatorically possible
bisector embeddings for a B-node and show that every
combination is considered.

By definition, all events occur at intersections of
bisectors of P . Furthermore, before and after each
event all wavefront vertices advance on bisectors of
P . The proofs of the subsequent claims are contained
in the full paper.

Lemma 2 Any wavefront propagation results in a bi-
sector graph.

Lemma 3 Any wavefront propagation results in a
roof.

Lemma 4 A capped roof of height t, constructed us-
ing a wavefront propagation, fulfills the natural gra-
dient property for all its facets.

Lemma 5 A bisector graph can be seen as a directed
acyclic graph (DAG).
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Lemma 6 The speed of a wavefront vertex v defines
the slope of its associated ridge or valley, with respect
to v and Π0.

Corollary 7 A slower wavefront vertex leads to a lo-
cally larger slope of its associated ridge or valley, and
vice versa.

Lemma 8 The volume of a natural roof created by
a wavefront propagation can only be influenced by a
create event.

Lemma 9 A create event takes place at a reflex
wavefront vertex p. A small disc c centered at p is
partitioned into three wedges by the three B-arcs in-
cident at p. If one wedge has an angle greater than
π it involves a wavefront vertex, starting at p, that
moves faster than the wavefront vertex which ends at
p; cf. Fig. 1e.

Definition 10 (De-/Accelerating Create Event)
Accepting a create event during the wavefront prop-
agation results in new wavefront vertices. If one of
the new wavefront vertices moves faster than the
intersected wavefront edge or vertex then we call it
an “accelerating” create event. If all new wavefront
vertices move slower than the intersected wavefront
vertex then we call it a “decelerating” create event.

Lemma 10 A create event with out-degree three is
always an accelerating create event.

Note that this implies that decelerating create
events can only occur on reflex wavefront vertices,
i.e., for the first case of Definition 8(1). Furthermore,
Lemma 9 implies that Definition 10 is complete; there
is no third class of create events.

Lemma 11 A decelerating (accelerating) create
event increases (decreases, resp.) the roof volume.

Summarizing, a faster moving vertex increases the
area that is swept by the wavefront, thus resulting
in a locally reduced roof volume. Other propagation
events that occur earlier can, at most, lead to a re-
duction of the roof volume. Conversely for a slower
moving vertex. Hence, one run of the wavefront prop-
agation (without backtracking) suffices to obtain a
minimum-volume or maximum-volume roof. We sum-
marize our result in the following theorem.

Theorem 12 Accepting all decelerating (accelerat-
ing) create events during the wavefront propagation
leads to Bmax (Bmin, respectively).

3 Analysis

We use a wavefront propagation for both Bmin(P ) and
Bmax(P ). The complexity is dominated by the com-
putation of all create events. For Bmax(P ), one re-
flex input vertex can result in O(n) create events.
Thus, we can get a quadratic number of facets. To
handle one create event during the propagation takes
O(n log n) time. The overall complexity is therefore
O(n3 log n) time and O(n2) space. For Bmin(P ), it
is unclear if more than O(n2) create events can oc-
cur. Hence, Bmin(P ) may admit a cubic number of
facets which leads to O(n3) space, but the same time
complexity.

4 Extensions

Our natural roofs can be regarded as a generaliza-
tion of realistic roofs [6, 1], but our current defini-
tions prevent a clean mathematical statement regard-
ing any subset relation among these two types of roofs:
The work of [6, 1] is restricted to rectilinear polygons,
while we exclude parallel input edges explicitly. How-
ever, since parallel segments might occur during the
wavefront propagation, we suspect that the restriction
on the input edges can be waived. This would permit
to apply our approach to the setting of [6, 1], thus
reducing the time complexity for finding a minimum-
volume realistic roof from O(n5) to O(n3 log n). Ob-
taining a minimum-height roof is ongoing work, too.
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